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Abstract

Over the past decade, Gravity Gradient Instruments (GGIs) - devices which

measure the spatial derivatives of gravity, have improved remarkably in accuracy due

to the development and refinement of a variety of accelerometer technologies. Some

specialized GGIs are currently flown on aircraft for geological purposes in the mining

industries and, as such, gravity gradient data is recorded in flight and detailed gradient

maps are created after post mission processing. These maps, if stored in a database

onboard an aircraft and combined with a GGI, form the basis for a covert navigation

system using a process known as the map matching method. This system, if it could be

successfully implemented, would be completely passive - impervious to conventional

jamming methods and relying only on local gravity gradient measurements from an

onboard sensor.

This paper entails an investigation into the feasibility of using a modern GGI

on an airborne platform for covert navigation and terrain avoidance by examining

GGI signal levels in different flight scenarios (low, medium, and high altitudes and

velocities). Previous studies using gravity gradiometers have been accomplished with

promising results (some theoretical gradiometers have been predicted to produce GPS-

like navigation accuracy). However, while major improvements have been made to

current airborne gravity gradient instruments, they still produce noise at least an

order of magnitude too high for useful aircraft navigation purposes. This research

focuses on the implementation of an new airborne GGI, currently in flight test, which

has demonstrated approximately an order of magnitude better sensitivity than current

airborne GGIs. To demonstrate whether or not this technology is currently feasible,

a model of the GGI sensor was developed to investigate signal levels at representative

flight conditions. Using the sensor model, representative aircraft trajectories were

flown (simulated) over modeled gravity gradient maps to determine the utility of
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flying current GGIs in the roles of terrain avoidance and navigation. The results of

the GGI simulations at different altitudes, velocities, gravity gradient map resolutions

and gradiometer sensitivities are presented and discussed. It was shown that the map-

matching navigation system based on this new instrument has the potential to provide

a marked improvement over a non-aided INS in some cases but was limited by the

drop in gravity gradient strength at higher altitudes, particularly in areas of smooth

terrain. It was originally hypothesized that the GGI could also be used for terrain

avoidance due to the rapid signal change as rising terrain is approached. However, GGI

gradient production rate and bandwidth limitations, along with the inverse nature of

the terrain avoidance problem, rendered GGI aided terrain avoidance unfeasible for

the time being.
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An Investigation into the Feasibility of using a Modern

Gravity Gradient Instrument for Passive Aircraft

Navigation and Terrain Avoidance

I. Introduction

Background

The ability to precisely navigate is a critical enabler on the modern battlefield.

It is essential to mission accomplishment for aircraft, land vehicles, naval vessels, and

even personnel. Perhaps most importantly, in a military utility sense, is it allows

fast moving (i.e. airborne) platforms to find their way to and place weapons on a

target with minimum collateral damage. As they navigate, most modern military

aircraft and munitions rely on some form of a Global Navigation Satellite System

(GNSS) for position updates. This system, using a set of signals from independent

satellites to triangulate position, is proven and provides the needed accuracy for most

mission objectives. However, these satellite signals can be denied by physical blockage

(i.e. inside a cave or deep underwater), jamming or by destruction of the satellites

broadcasting them.

There is a significant amount of research into methods to precisely navigate in

a GPS denied environment. Some of these include, but are not limited to, the use

of pseudolites, terrain referenced navigation (TRN) such as Sandia Inertial Terrain

Aided Navigation (SITAN), Terrain Contour Matching (TERCOM), Terrain Pro-

file Matching (TERPROM), image based navigation, and inertial navigation systems

(INS) which can be provided with position updates from the aforementioned naviga-

tion methods to correct drift errors [1,2]. Another method of aircraft navigation that

has been given relatively little attention over the last 25 years is by use of a device

known as a gravity gradient instrument (GGI).

A gravity gradiometer is a device that measures spatial derivatives of the earth’s

gravity “acceleration” vector. These spatial changes in earth’s gravity are caused

1



by the fact that the earth is elliptical (rather than perfectly spherical), is spinning,

has varying terrain features, and mass densities which are not constant. They are

very small and require a great deal of sensor accuracy to properly measure. Over

the past two decades, gravity gradiometers have been carried in aircraft and used

with rapidly increasing success for geological surveys. The speed at which these

aircraft can fly, combined with improved sampling rates and noise reduction features of

modern airborne GGIs, allow surveyors to map the gravitational gradients caused by

terrain and subterranean anomalies much faster than their ground based counterparts

(as well as reaching areas otherwise inaccessible by land). Gravitational gradient

maps are recorded, processed and used post flight to increase understanding of the

earth’s gravitational field and for kimberlite, oil and other valuable natural resource

detection [3,4]. If received GGI signals were able to be correlated to an existing map

generated by a survey (or by theory), a basis for a covert navigation system could

be formed, similar to TRN, but requiring no external emissions, no susceptibility

to adverse weather conditions, and a signal that is, by today’s standards, virtually

impossible to jam - requiring terrain to be moved to “fool” the sensor.

Before continuing,“precision navigation” must be defined as it pertains to the

scope of this research. The term precision navigation is sometimes loosely thrown

around when describing the accuracy of navigation systems. Centuries ago, precision

navigation was a matter of arriving at the correct continent. During WWII, the

Norden bombsight made “precision” high altitude bombing a reality by placing bombs

within a 30m circle from an altitude of 6km (under ideal circumstances) [5]. With

the advent of GPS and, more recently, differential GPS, precision navigation has,

once again, been redefined with navigation errors of less than 1m. While this may

seem impressive today, suppose in the future that one wants to navigate a micro UAV

through a building or maybe even through an air conditioning vent! Clearly, 1m of

error could be unacceptably large for that application. For this research, precision

navigation refers to the level of accuracy attainable by GPS or GPS aided systems.
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Gravitational Gradient

According to Wellenhoff and Moritz [6], the gravitational potential, V , of a point

in a gravitational field is defined as the work done per unit mass by the pull of gravity

to bring a body from infinity to that point. It is a scalar, zero order tensor function.

From Newtonian potential theory, the gravitation potential at a point in a cartesian

coordinate system (x, y, z), due to an attracting mass distribution having the density

function ρ(x′, y′, z′) and volume v′, is given by the following volume integral:

V = G

∫∫∫
v′

ρ

r
dv′ (1)

where:

r =
√

(x− x′)2 + (y − y′)2 + (z − z′)2 and represents the distance between the

element point Q(x′, y′, z′) and the computation point P (x, y, z) .

G is Newton’s gravitational constant and is 6.6742 · 10−11m3kg−1s−2

dv′ = dx′dy′dz′ and is the volume element.

The gravitational force vector, F , is the gradient of the gravitational potential and is

given by:

F = ∇V =

[
∂V

∂x
,
∂V

∂y
,
∂V

∂z

]T
(2)

The gravitational gradient tensor, Vij, is the second-order tensor of the gravitational
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potential and is given by:

Vij = ∇F =


∂2V
∂x2

∂2V
∂x∂y

∂2V
∂x∂z

∂2V
∂y∂x

∂2V
∂y2

∂2V
∂y∂z

∂2V
∂z∂x

∂2V
∂z∂y

∂2V
∂z2

 =


Vxx Vxy Vxz

Vyx Vyy Vyz

Vzx Vzy Vzz

 (3)

The gradient is symmetric and it’s trace satisfies Poisson’s equation: ∇2V = −4πGρ.

When the density at the computation point is zero (i.e. free air), this equation

becomes Laplace’s equation. Thus, by Laplace’s equation, which states that the trace

of the tensor must sum to zero, and symmetry, this 9 component tensor has only 5

independent components.

It should be noted that, according to Equation 1, the gravitational potential

decreases linearly as r is increased. Consequently, the gravitational force and gravi-

tational gradients attenuate as a function of r2 and r3, respectively.

Note that “gravitational” phenomena have only been addressed thus far. Grav-

ity is a more familiar term and, as it pertains to objects on the earth’s surface, stems

from the combination of the gravitational force vector and centrifugal force due to

the earth’s rotation (also a vector). These combined forces, acting on a unit mass,

constitute the gravity vector, g. “Gravity” is the magnitude of vector g and carries

units of acceleration. The typical value of this acceleration over the earth’s surface is

the familiar 9.8m/s2. Like gravitational potential, gravity potential, W , exists and is

also a scalar, zero order tensor function. It is simply a combination of gravitational

potential, V , and centrifugal potential Φ:

W = V + Φ (4)
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with

g = ∇W =

[
∂W

∂x
,
∂W

∂y
,
∂W

∂z

]T
(5)

In geophysical applications, a rotating ellipsoid of revolution is used to approx-

imate the earth and is assumed to be an equipotential surface of a normal gravity

field with potential U . The difference between the actual gravity potential, W , and

the normal potential, U , is called the disturbing potential, T :

T = W − U (6)

with the gravitational disturbance gradients defined as:

Tij =


∂2T
∂x2

∂2T
∂x∂y

∂2T
∂x∂z

∂2T
∂y∂x

∂2T
∂y2

∂2T
∂y∂z

∂2T
∂z∂x

∂2T
∂z∂y

∂2T
∂z2

 =


Txx Txy Txz

Tyx Tyy Tyz

Tzx Tzy Tzz

 (7)

where Txx is the change of gravity in the x direction while moving a known distance

in the x direction and Txy is the change of gravity in the x direction while moving

a known a known distance in the y direction. The remaining gradients are defined

similarly.

The gravitational disturbance gradient tensor, like the gravitational gradient

tensor, satisfies Laplace’s equation in free air and is symmetric, thus giving it 5 inde-

pendent components which carry units of 1/s2. Since the magnitude of the gradients

is very small, units of 1/ns2 are commonly used. These units, known as Eotvos(Eo),

were named after 19th century Hungarian physicist Baron Roland von Eotvos and are

not recognized by the SI system but are commonly used in the geophysics commu-

nity [7]. To add physical meaning to the unit, 1 Eotvos is equivalent to the gradient

of a gravitational field produced by 10 grains of sand at a distance of 1cm [8]. Since
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the normal gravity potential and its gradients are known for a specified ellipsoid (i.e

WGS84), only the calculation (or estimation, as it will turn out) of Tij is required.

To understand how Tij manifests, consider its source: Assuming the earth is approx-

imated as an ellipsoid of revolution with a smooth surface and an assumed constant

density, variations in the surface (terrain) and density contrasts within the terrain

and the ellipsoid will cause variations in addition to the nominal potential and, in

turn, create the gravity gradient disturbance. Some of the methods to predict these

disturbance gradients will be investigated in Chapters 2 and 3. It should be noted

that a GGI measures the actual gravity gradients, but the nominal gradients, Uij,

are known, slowly changing (spatially), and generally treated as a bias. Thus, com-

putation of the gravitational disturbance gradient tensor is the more urgent focus of

current research.

A Gravitational Disturbance Gradient

To gain insight into the gravitational gradient caused by a mass anomaly, an

example using a simple rectangular prism of constant density, shown in Figure (1), is

presented. The prism is defined by the vertices at (x1, y1, z1), (x2, y1, z1), (x2, y2, z1),

and (x2, y2, z2) with the coordinate system used having axes parallel to the prism sides

and the origin at point P . Beginning with Equation (1), the closed form solutions for

the five gravitational disturbance gradients, observed at point P , caused by the prism

can be found [9].
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Figure 1: Rectangular Prism.

Txx = G∆ρ
2∑
i=1

2∑
j=1

2∑
k=1

(−1)i+j+k tan−1

(
(y − yj)(z − zk)

(x− xi)r

)
(8)

Txy = −G∆ρ
2∑
i=1

2∑
j=1

2∑
k=1

(−1)i+j+k ln((z − zk) + r) (9)

Txz = −G∆ρ
2∑
i=1

2∑
j=1

2∑
k=1

(−1)i+j+k ln((y − yj) + r) (10)

Tyy = G∆ρ
2∑
i=1

2∑
j=1

2∑
k=1

(−1)i+j+k tan−1

(
(x− xi)(z − zk)

(y − yj)r

)
(11)

Tyz = −G∆ρ
2∑
i=1

2∑
j=1

2∑
k=1

(−1)i+j+k ln((x− xi) + r) (12)
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where:

∆ρ is the density contrast between the element and computation point medium

r =
√

(x− xi)2 + (y − yj)2 + (z − zk)2

Note: The coordinate system used here and throughout this study is the North, East,

Down (NED) system where positive y corresponds to North, positive x corresponds

to East, and positive z corresponds to Down.

Figure 2: Hypothetical Prism Orientation and Dimensions.

Figure 2 shows the orientation and dimensions of the prism, or hypothetical

brick, used to demonstrate the disturbance gradient. The brick, having a constant

density of 1.5g/cm3, is centered on a 250m × 250m grid. The gradients, shown in

Figure 3, were calculated on a plane 50m above the center of the brick (z=-50m).

Due to symmetry, only part of the disturbance gradient tensor is shown. The Txx

gradients highlight the x-axis (or east-west) edges of the brick by measuring the east-

west changes in east-west gravity. Similarly, the Tyy gradients show the y-axis (or

north-south) edges of the brick by measuring the north-south changes in north-south

gravity. Tzz highlights the overall shape of the anomaly as it is a combination of

Txx and Tyy with a sign change. Txz and Tyz gradient data outlines the north-south
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Figure 3: Example Gravitational Disturbance Gradients.

and the east-west mass anomaly axes, respectively. They also help to highlight the

north-south and east-west edges. While Txz, Tyz and Txy are less intuitive, they

contain unique information. If these gradient maps were stored in a database and the

gradients were able to be accurately measured real-time as the grid were traversed,

there is enough information for unique determination of position on the grid based on

these measurements. This is the fundamental concept behind navigation via a gravity

gradiometer based map matching system.

In order to better understand the frequency content of the gravitational gradi-

ents, Figure 4 shows the spatial frequency spectrum produced by the brick’s gradients.

These gradients can be broken into spatial frequencies because they are periodic across

position in space. A basic understanding of an anomaly’s signal structure will be ben-

eficial should a filter be applied to a real-world gradiometer signal. The plot clearly
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Figure 4: Example Gravitational Disturbance Gradient Spectrum.

illustrates that most of the signal from the brick is in the 0.001 to 0.01cyc/m spatial

frequency range along both axes. This corresponds to wavelengths of approximately

100− 1000m. Note that cyc/m denotes cycles (or periods) per meter and is standard

nomenclature for spatial frequency.

The Gravity Gradiometer

Consider a proof mass attached to a linear spring and anchored inside a housing

in a reference frame which is free from a gravitational field (see Figure 5). In this case,

Newton’s Second Law is simply: mẍ = F , where m is the mass of the proof mass,

ẍ is acceleration along the x axis and F is the force applied to the housing. When

a specific force acts on the housing, it will accelerate with constant acceleration, a,

with respect to the given reference frame. This will cause the proof mass to move
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Figure 5: Accelerometer.

relative to the housing, the spring to compress, and the resultant spring force, fs,

to act on the mass. Let xpm denote the position of the proof mass relative to the

housing and xh denote the position of the housing in the external reference frame.

Now, the position of the proof mass in the external reference frame is x = xh + xpm

and it’s acceleration is ẍ = ẍh + ẍpm. The spring force, given by Hooke’s law, is:

fs = −kxpm = mẍpm, where k is the spring constant. Therefore, by Newton’s Second

Law of Motion, the equation of motion for the proof mass is: ẍpm +
k

m
xpm = −a.

Assuming initial conditions of xpm(t = 0) = 0 and ẋpm(t = 0) = 0, the solution to the

proof mass’s differential equation is:

xpm(t) =
−ma
k

[
1− cos

(
t

√
k

m

)]
(13)

Thus, the position of the proof mass relative to the housing is proportional to the

applied acceleration (with proportionality constant m
k

). If fs or x can be measured, a

can be found in which case this device is now an accelerometer. While this constitutes

a simple example of an accelerometer, devices in use today are based on the same

fundamental principles (i.e. somehow measuring the relative motion of a proof mass

to solve for acceleration). Now, suppose this simple accelerometer is placed in an

area where it is under the influence of a gravitational field, but no specific forces act

on the housing (e.g. freefall). Newton’s Second Law becomes (assuming mg = mi,
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that is, inertial and gravitational mass are the same): ẍ = a + g, where g is the

gravitational acceleration vector. This gravitation vector will act to accelerate not

only the housing itself, but also the proof mass and the spring. By Newton’s Law of

Gravitation, the gravitational acceleration of the housing and all of its components is

the same (assuming the gravitational acceleration, g, is constant over the housing).

Now the motion of the proof mass in the external frame becomes: ẍ = g. Likewise,

ẍh = g. Thus,

ẍ = ẍh + ẍpm ⇒ g = g + ẍpm ⇒ ẍpm = 0 ⇒ xpm(t) = 0 (14)

and there is no motion of the proof mass relative to the box. In other words, the

accelerometer is accelerating in a gravitational field, but measures no acceleration!

That is, an accelerometer does not directly sense the presence of a gravitational field,

only specific forces resulting from applied, action or contact forces. To reiterate,

accelerometers do not sense gravitational acceleration. They will, however, sense

reactions from gravitational field forces. For example, if an accelerometer oriented

along the “down” axis in a NED reference frame were placed on the surface of the

earth, it would sense the reaction to the gravitational force provided by the earth’s

surface. Finally, in accordance with the principle of equivalence, the accelerometer

cannot distinguish whether this reaction is a result of gravitation, rotation, or an

applied force. This trait is the key behind the concept of the gravity gradiometer [10].

Figure 6: A Simple Gravity Gradiometer.

Suppose that an accelerometer is used in an attempt to measure gravity reac-

tion forces. This device represents an gravimeter - a single accelerometer oriented
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to measure gravity along some axis of interest. While gravimeters are very success-

ful in measuring gravity information on fixed platforms (such as the ground), their

accuracy plummets when used on a moving base platform - particularly in the air-

borne environment. Aircraft vibrations from engines, pumps, etc., combined with

accelerations from turbulence, engine thrust changes, and maneuvers to render ac-

curate gravity measurements difficult due to the single accelerometer’s inability to

distinguish between inertial and gravitational acceleration.

Now suppose that a pair of accelerometers are mounted in-line along some axis

at some known distance apart, as in Figure 6. If the accelerometer readings are

differenced and then divided by the length between them, a gravity gradient has been

measured:

gravity gradient =
A2− A1

L
(15)

By measuring the gravity gradient, host vehicle accelerations of the first order are

intrinsically rejected, thus leaving only the differential acceleration of the earth’s

gravity field over some unit distance [11]. It should be noted that the distance between

the accelerometers is critical for gradiometer performance. If the distance is too

large, the host vehicle accelerations sensed by each accelerometer may be substantially

different and thus difficult to difference out. If the distance is too small, gradiometer

sensitivity will be compromised. In reality, accelerometer misalignment, scale factor

differences and other noise sources can corrupt the gradient measurement. In order

to measure the full tensor of gravity gradients, a minimum of three accelerometer

pairs are oriented along three axes. It should also be noted that the terms “gravity

gradient instrument”, “GGI”, and “gravity gradiometer” are used interchangeably in

this research.
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An Inverse Problem

Suppose that the shape of the earth and the density variations within it are

exactly known. With this information, a unique value of the actual potential, W , can

be found. That is, the determination of the actual potential is a “direct” problem.

Now suppose that the actual potential is known (perhaps by GGI measurements)

and the shapes and density variations that caused it are to be calculated (i.e the

“inverse” problem). It is, in fact, impossible to uniquely solve for these potential

generating masses without additional information. There are an infinite number of

possible combinations of mass location and density variations that could create a

certain value for the potential. To determine the solution (or to better estimate it),

additional information must be provided. This phenomenon may hamper GGI-based

terrain avoidance performance.

Problem Statement

While a limited number of navigation performance studies using information

from a gravity gradiometer have been accomplished in the past, the high error level

associated with using this sensor on an aircraft rendered successful navigation mainly

a function of the assumptions regarding the performance of future gradiometers. Be-

cause of these errors and the inverse problem, relatively little research into GGI based

navigation and terrain avoidance is available in open literature. Since airborne grav-

ity gradiometers have seen remarkable improvements over the past decade [12], this

research aims to investigate the feasibility of using a modern GGI, which must pro-

vide real-time gradient measurements, in the role of passive navigation and terrain

avoidance with emphasis on military type flight environments by rigorously examining

simulated GGI signals at a variety of representative flight conditions and comparing

them to those proven in previous works to yield navigation performance improve-

ments. The signals will be analyzed with respect to their ability to be matched to

a map. It should be noted that most of the representative flight conditions to be

examined have not been previously investigated in open literature.
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This research is part of the first phase of a three-phase plan. Phase one is a fea-

sibility study where a GGI will be selected and its model developed and implemented

to investigate signal levels at representative flight conditions. Phase two involves

procuring a GGI and integrating it as a sensor in a navigation system. This phase

will include sensor model refinements and validation and will culminate with a navi-

gation demonstration on a land-based vehicle. The final phase involves flight-testing

of the navigation system in an aircraft to demonstrate military utility and validate

the overall modeling effort.

Feasibility

First and foremost, the definition of feasibility within the scope of this study

must be defined. The following stipulations will apply:

� Navigation will be performed onboard an airborne aircraft.

� The gravity gradiometer will be 1m3 in size and weigh 450kg, maximum.

� “Modern GGI” is defined as a gravity gradiometer projected to be available

within the next 10 years.

� Passive Navigation will be based on a map-matching method and performance

improvements, if any, will be measured against unaided Nav Grade IMUs.

� Terrain avoidance performance will be based on the GGI’s ability generate a

signal that is useable to predict terrain impact is imminent within 1.5 seconds

[13].

Research Objectives

With feasibility defined, the research objectives for this study are presented.

It should be noted that sensor cost was not considered for this study. Additionally,

further assumptions and limitations will be addressed in subsequent chapters.
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� Investigate modern gravity gradiometers available for introduction into an air-

craft.

� Select gradiometers, based on noise, bandwidth, sampling rate, size and weight,

most suitable for aircraft navigation and terrain avoidance.

� Develop models of the GGI sensors deemed most usable for aircraft navigation

and terrain avoidance.

� Generate gravity gradient maps that represent realistic values produced by the

earth.

� Examine simulated GGI signal variations in response to factors including alti-

tude, airspeed, terrain variation, and formation effects.

� Attempt to classify signal threshold levels for useful terrain avoidance and nav-

igation via map-matching.

� Determine if the selected GGI meets signal threshold requirements.

� Recommend needed gradiometer improvements, if any, and appropriate ways

to integrate the GGI signal into navigation (with emphasis on map-matching

methods) and terrain avoidance systems.

Preview

This thesis is divided into four subsequent chapters. Chapter II presents the

literature review for this research. Divided into three parts, it encompasses the history

of gravity gradiometry, a review of modern airborne gravity gradiometer technology,

and a review of previous gravity gradiometer based navigation and terrain avoidance

research. Chapter III highlights the problem setup and methodology. It covers how

gravity gradient maps were constructed, how the GGI was modeled, and the tests

that were executed in order to determine navigation and terrain avoidance feasibility.

Chapter IV provides the results and analysis and serves to report the findings from

the feasibility study. Chapter V is a closing discussion that will conclude the thesis
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with significant contributions and insights. Also, some challenges and future research

recommendations will be discussed.
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II. Literature Review

History of Gravity Gradiometry

Gravity gradiometry began in 1890 when Baron Roland von Eotvos, a Hungar-

ian physicist, developed an instrument known as the torsion balance to measure the

minute variations in gravity over a short distance. The torsion balance was made of

a metal beam, suspended by a wire, with weights at each end (similar to a dumb-

bell). If gravity varied with position along the axis the weights were placed on, the

force exerted on each weight would be different, thus causing a rotational force on the

beam and in turn causing the wire to twist. Eotvos measured the amount of twist to

determine the gravity gradient.

Figure 7: Eotvos’ Torsion Balance - The First Gravity Gradiometer

In 1901, Hugo de Boeckh, head of the Hungarian geologic survey, convinced

Eotvos to test the real-world usefulness of the torsion balance. The device was used

to map the shape of a frozen lake basin, which was already well known from previous

summertime measurements made from a line and sinker. The test was a resounding

success - the contour map generated via the torsion balance matched the previously

made maps. Eotvos and Boeckh then completed more difficult geological surveys in

the region. Word of Eotvos’ torsion balance success quickly spread to oil prospectors

around the world - gravity gradiometry had officially been born.

After World War I, American geologists used the torsion balance in a attempt to

find salt domes - mushroom shaped underground geologic structures that often have
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oil and gas deposits along their sides. Since salt is less dense than most rock, it exerts

a weaker gravitational force relative to the earth surrounding it. As such, gravity

gradients can highlight a buried salt dome. In 1924, geologists from the Amerada

Hess Corporation struck paydirt by finding a hidden salt dome via measurements

made from a torsion balance. By 1935, the use of gravity gradiometry for subsurface

surveys was routine - particularly in the oil business [14].

The early success of the torsion balance, however, did not secure its long term

use. The instrument was fairly difficult to use in the field. In order to make a reliable

measurement, geologists had to first clear a 100 meter long swath in eight directions

(star pattern) from the location of the torsion balance to prevent the mass of trees and

rocks from corrupting measurements. Additionally, a small building had to be erected

in order to protect the instrument from wind and temperature changes. To get an

idea of the sensitivity of the torsion balance, measurements could be corrupted by the

large belt buckles often worn by geologists! To compound the problem, gradiometer

data was often misinterpreted which led to false survey results. These issues led to the

boom in the use of gravimeters, devices which measure gravity rather than the change

of gravity per unit distance, for surveys. Gravimeters are inherently less sensitive

than gradiometers and thus did not require extensive measurement site preparation.

Furthermore, the data from gravimeters was easier to interpret. This led to increased

investments in gravimeters and by the 1950s, gravimeters had replaced gradiometers

in most gravity field measurement applications [4]. For the time being, the gravity

gradiometer was gone but certainly not forgotten.

In the 1970s, both US and Russian navies realized that the accuracy of sub-

marine launched ballistic missiles (SLBMs) depended greatly upon precise knowledge

of gravity at the time of missile launch. Since gravimeter measurements plummet in

accuracy on moving platforms, a new wave of research into gravity gradiometers was

launched. [4] Around the same time, the US Air Force had abandoned gravimeter sys-

tems for airborne surveys due to the fact that kinematic accelerations overwhelmed

the anomalous gravimetric signal on the aircraft in flight. By the early 1980s, Bell
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Aerospace Textron had successfully developed a moving base full tensor gravity gra-

diometer. The instrument, developed by Ernest Metzger, was selected by the Navy

(with over 400 million USD in development costs) for gravity compensation require-

ments of its trident submarine inertial navigation systems and by the Air Force Geo-

physics Laboratory (AFGL) for it’s region airborne gravity survey system. In the mid

1980s, part of this technology was declassified and eventually used in the 1987 Defense

Mapping Agency (DMA) funded flight test of the Gravity Gradiometer Survey Sys-

tem (GGSS). This test, accomplished by AFGL, constituted the first airborne gravity

gradiometer survey published in open literature. The GGSS consisted of Bell/Textron

(now owned by Lockheed Martin) gradiometers which were installed in the back of a

van along with other support equipment. Since much of the GGSS was hardwired into

the van, the van was simply loaded into a C-130 Hercules aircraft for flight test. The

survey was flown over southwestern Oklahoma and northern Texas and, while high

in noise (∼ 40Eo/
√
Hz), was able to measure low frequency effects corresponding to

subterranean anomalies in the area [15]. In all, the GGSS represented an outstanding

achievement that sparked a fury of airborne gradiometer development. The speed at

which aircraft can fly, as well as the ability to access remote areas of land, made much

larger and quicker surveys a reality. Many oil and other valuable natural resource

mining industries had renewed interest in gravity gradiometers.

Today, airborne gravity gradiometers are used mainly for geological surveys in

the hunt for valuable natural resources. Companies such as Bell Geospace, ARKex,

Gedex and Fugro provide airborne gravity gradient surveys to customers who desire

such data. Also, geophysicists use them to better understand our planet’s gravity

field and overall structure. For this role, gradiometers have been installed and used

with success on ships, aircraft and satellites [4, 16–18].
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Airborne Gravity Gradiometer Technology

Figure 8: Rotating Accelerometer Schematic, taken from [3].

Rotating Accelerometer Gravity Gradiometer. The rotating accelerometer

Gravity Gradient Instruments (GGIs) are based on the Bell Aerospace/ Textron de-

sign (now owned by Lockheed-Martin) and use, at a minimum, 2 pairs of conventional

accelerometers mounted opposite of each other on a spinning disk to measure gradi-

ents in the plane of rotation (i.e. normal to the axis of spin) as shown in Figure 8

Each accelerometer consists of a mass which is pivoted (i.e. a pendulum) and a sensor

that measures the offset position of the pendulum along its path of travel. Included

within each accelerometer is electronic circuitry that restores the pendulum to its base

position through the use of electromagnets and constrains the pendulum to minimal

movements along the input axis of the accelerometer [19]. This applied electric signal

represents the output of the accelerometer and serves as a measure of the acceleration

of the pendulum brought on by any forces applied to the accelerometer. The mea-

surements from each pair of accelerometers can be resolved into two gradients in the

plane of the rotating disc by accounting for the distance between each accelerometer,

the rate at which the disc is spinning, and the difference in the measured accelerations

between each pair. In order to obtain a full gravity tensor (5 independent gradients),

three rotating discs must be used since each disk can only measure 2 components of
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the tensor. The tensor components measured in the external coordinate axis are then

found by using the appropriate linear combination of the six GGI outputs.

The three rotating accelerometer GGI outputs are given as follows:

xz plane : (A1 + A2)− (A3 + A4) = 2RdsinΩt(Tzz − Txx) + 4RdTxzcos2Ωt, (16)

yz plane : (A1 + A2)− (A3 + A4) = 2RdsinΩt(Tzz − Tyy) + 4RdTyzcos2Ωt, (17)

xy plane : (A1 + A2)− (A3 + A4) = 2RdsinΩt(Tyy − Txx) + 4RdTxycos2Ωt (18)

More specifically, the derivation of the measured output from a single disk is

presented: From the geometry of the disk and placement of the accelerometers shown

Figure 9: Single Rotating Accelerometer Disk

in Figure 9, an equation for the acceleration measured by accelerometer A1 can be

derived [11]:

A1 = (ay + TyxRdcosΩt+ TyyRdsinΩt)cosΩt−

(ax + TxxRdcosΩt+ TxyRdsinΩt)sinΩt (19)

where ay is the gravitational field induced acceleration at the center in the y direction,

ax is the gravitational field induced acceleration at the center in the x direction, Rd
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is the distance from the center of the disk to the accelerometer, and Ω is the angular

velocity of the disk about its spin axis.

Expanding Equation 19 gives:

A1 = (aycosΩt+ TyxRdcos
2Ωt+ TyyRdsinΩt cosΩt)−

(axsinΩt+ TxxRdcosΩt sinΩt+ TxyRdsin
2Ωt) (20)

Recalling the following trigonometric identities: cos2Ω = 1
2

+ 1
2
cos2Ω, sin2Ω = 1

2
−

1
2
cos2Ω, and sinΩtcosΩt = 1

2
sin2Ωt with Tyx = Txy, Equation 20 gives:

A1 = aycosΩt− axsinΩt+ TxyRd(
1

2
+

1

2
cos2Ωt) + Tyy

Rd

2
sin2Ωt−

Txx
Rd

2
sin2Ωt− TxyRd(

1

2
− 1

2
cos2Ωt) (21)

Combining like terms of Equation 21 gives:

A1 = aycosΩt− axsinΩt+ TxyRdcos2Ωt+
Rd

2
sin2Ωt(Tyy − Txx) (22)

Since the opposing accelerometer (A2 in this case) is always π radians away from

A1, the acceleration measured by A2 can be derived by replacing Ωt with Ωt + π in

Equations (1)-(4):

A2 = −aycosΩt+ axsinΩt+ TxyRdcos2Ωt+
Rd

2
sin2Ωt(Tyy − Txx) (23)

Summing Equation 22 and Equation 23 gives:

A1 + A2 = 2TxyRdcos2Ωt+Rdsin2Ωt(Tyy − Txx) (24)

Replacing Ωt with Ωt+ π
2

and Ωt+ 3π
2

in Equations 19-23 gives the relationship between

A3 and A4:

A3 + A4 = −2TxyRdcos2Ωt−Rdsin2Ωt(Tyy − Txx) (25)
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Subtracting Equation 25 from Equation 24 gives the basic element of measurement

from a rotating disc gravity gradient instrument:

(A1 + A2)− (A3 + A4) = 2RdsinΩt(Tyy − Txx) + 4RdTxycos2Ωt (26)

This combination signal (Equation 26), called a bandpass signal, is normally

low-pass filtered and digitized, and then demodulated at sin2Ωt and cos2Ωt to obtain

Txy and (Tyy − Txx). Also note that if the accelerometers are perfectly aligned, scale

factor balanced, and linear, no angular or wheel acceleration terms appear in Equa-

tion 26. Additionally, any residual linear acceleration sensitivity will be modulated

at Ω and will not appear after the demodulation at 2Ω. In essence, the perfect rotat-

ing accelerometer gradiometer, if mounted on a stabilized platform, is not sensitive

to vehicle accelerations to the first order [11]. However, sensor misalignment, scale

factor differences of each accelerometer, and other real-world errors create nonlinear

coefficients that allow noise into the gradient measurements.

Figure 10: Bell Geospace Air-FTG, taken from [3].

The Bell Geospace Air-FTG is a 3 disc, rotating accelerometer type gradient

instrument (shown in Figure 10) that was launched in 2002. It is based on Lock-
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heed Martin’s 3D FTG and includes proprietary post mission processing upgrades

for improved performance. Each disc is mounted such that their axes of rotation

are mutually perpendicular and each make the same angle with the vertical (Fig-

ure 11). This is known as an umbrella configuration. The GGIs are also mounted on

a three-gimballed stabilizing platform.

Figure 11: Bell Geospace Air-FTG, taken from [3].

To minimize bias from the orientation or movement of the instrument, the as-

sembly of rotating discs is rotated at a constant rate (300 deg/hr) about a vertical

axis. The Air-FTG is widely used in airborne gravity gradient mapping in the USA,

Canada, South Africa, Botswana, Zambia, and Mali. With a weight of roughly 450kg

and requiring approximately 1 cubic meter of space (with data acquisition equip-

ment), the Air-FTG is flown primarily in the Cessna Grand Caravan - though it has

been carried by zeppelins (airships) for improved stability and reduced noise [20]. The

Cessna’s propeller speeds, engine noise, vibrations and other disturbances acting on

or within the Air-FTG are monitored during each flight and compensated for during

post-flight data processing. Since, in the real world, no instrument is perfect, there

is some non-linear behavior within the gradiometer. These nonlinear coefficients can

cause noise due to host vehicle accelerations and disk bearing noise within the de-

sired bandwidth. This noise is not a direct measurement of host vehicle accelerations

but instead is the various products of acceleration and the accelerometer nonlinear
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coefficients. Thus, if the coefficients are known and the host vehicle accelerations and

measured, the noise can be determined and eliminated. This is exactly what BellGeo’s

proprietary High Rate Post Mission Compensation (HRPMC) does. By recording the

host vehicle accelerations and then multiplying these accelerations of the correct order

to the assumed coefficients, the nonlinear coefficients are found. A numerical regres-

sion technique is then performed on each coefficient until the noise is minimized.

This HRPMC technique has been proven adequate for removing noise for host vehicle

accelerations of around 0.1g standard deviation. Note that two other factors that

can induce measurement noise are misalignment of the combination of accelerometers

within each GGI with respect to the plane of rotation and any scale factor difference

between the two accelerometer pairs. Both of these issues are addressed before each

survey through calibration techniques. Additionally, gravity gradient measurements

are extremely sensitive to gravitational field disruptions caused by nearby masses.

Such masses include the host vehicle structure and stores. Since these masses move

with the host vehicle, it is critical to remove their influence from the measured data.

This process is accomplished by flying a specially designed survey pattern. Airborne

gradiometer surveys are always conducted in an orthogonal pattern which results in

many crossing points. Data from these points is then used to remove host vehicle

gravitational effects in part of a Low Rate Post Mission Compensation (LRPMC)

process [21].

For relatively good resolution, surveys are typically flown using drape methods

at 50-100m above the ground since the signal strength in the Air-FTG drops off

with the cube of the distance to the target. The current resolution of the Air-FTG,

after HRPMC and pre-flight calibration, is approximately 5 Eotvos at a gradient

production rate of 1Hz with a spatial resolution of several hundred meters. Without

the aforementioned processing steps, the Air-FTG noise levels are approximately 12-

15Eo [3, 21]. Note that raw accelerometer data is sampled at over 100Hz but after

compensation and demodulation processes, gradients are produced at 1Hz [22]. It is

also noted that gradiometer noise specifications are often given in terms of a noise
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spectral density (NSD) having units of Eo/
√
Hz. Furthermore, gravity gradiometer

manufacturers claim zero-mean Gaussian white noise for their GGIs. These white

noise characteristics are only valid over a certain range of frequencies (or bandwidth)

- generally from 0 to the Nyquist rate or a low pass filter cutoff frequency [23].

The Falcon AGG is another rotating accelerometer type gravity gradiometer.

The technology was jointly developed by BHP Billiton and Lockheed Martin and

recently sold to Fugro NV. The Falcon was considered the first airborne gravity gra-

diometer - initially flying in 1997 and used for survey work in 1999. Fugro has suc-

cessfully used the Falcon for airborne gravity surveys in 4 aircraft (3 Cessna Grand

Caravans and 1 helicopter). This system measures only two components of the grav-

ity tensor (Txz and Tyz) and uses these to calculate the vertical component of the

tensor, Tzz. The vertical gravity gradient RMS noise is around 5Eo after post flight

processing techniques similar to those of the Bell Geospace Air-FTG. A 6th order

Butterworth filter with a cutoff wavelength of 400m is typically used in Falcon AGG

data processing [24, 25]. Assuming a survey speed of 60m/s, this corresponds to a

cutoff frequency of approximately 0.15Hz. Dimensions and weight of the Falcon and

its data acquisition equipment are similar to those of the Air-FTG.

The ARKeX FTGeX is a GGI very similar to the previously mentioned instru-

ments. It too is based on Lockheed-Martin’s 3D-FTG and is often used with ARKeX

proprietary technology known as BlueQube. BlueQube involves the combination of

gravity gradiometry, magnetic gradiometry, digital terrain mapping (LiDAR), and

digital video to construct a complete map of the surveyed area. As with the Air-FTG

and Falcon AGG, RMS noise of the FTGeX is around 5Eo after post-flight processing,

while its size and weight are also similar [26].

While several versions of the rotating accelerometer GGIs have been presented,

one final point about this type of gravity gradiometer must be made. These are

the only type of gradiometers successfully used in airborne surveys. All other types

discussed herein are either in early flight test or a laboratory setting.
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Superconducting Gravity Gradiometer. Superconducting Gravity Gradiome-

ters (SGGs) get their name from the type of accelerometer that is used in the in-

strument. These accelerometers rely on the Meissner effect and flux quantization to

levitate a proof mass and measure the force required to hold that mass in place. Pairs

of superconducting accelerometers provide gradient measurements with low noise and

high resolution. They do so because superconductivity and extremely low tempera-

tures naturally give low noise, negligible scale factor drift and mechanical stability.

Superconducting circuits can also be balanced such that their responses to gravity

gradients are largely independent of all linear and angular accelerations applied to

the instrument. This balance stems from the ability to regulate currents in the vari-

ous superconducting loops. It is because of this balance that the scale factors remain

perfectly stable in time [27].

Diving deeper into the physics behind the SGG, the accelerometer itself is exam-

ined. First, a brief overview of superconductivity and the Meissner effect is presented.

A superconductor is defined as an “element, inter-metallic alloy, or compound that

will conduct electricity without resistance below a certain temperature” [28]. Meissner

discovered that when a superconductor is placed in a weak external magnetic field,

the field only penetrates the superconductor for a very short distance, after which

it drops rapidly to zero. In essence, a superconductor will expel all magnetic fields

(time variant and invariant). A magnet moving by a “normal” conductor induces cur-

rents in the conductor. This is the principle on which an electric generator operates.

But, in a superconductor, the induced currents exactly mirror the field that would

have otherwise penetrated the superconducting material - causing the magnet to be

repulsed. The Meissner effect is so strong that a magnet can actually be levitated

over a superconductive material, as shown in Figure 12 [29].

Flux quantization is a quantum phenomenon in which the magnetic field is

quantized. This occurs in type II superconductors subjected to a magnetic field.

Type II superconductors are characterized by their gradual transition from the su-

perconducting to the normal state as temperature increases. They tend to be made
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Figure 12: A Magnet Levitating above a Superconductor due to the Meissner Effect,
taken from [30].

of metal alloys or complex oxide ceramics. Below a temperature dependent critical

magnetic field Hc1, all magnetic flux is expelled according to the Meissner effect and

perfect diamagnetism is observed. Up to a temperature dependent second critical field

value, Hc2, flux penetrates in discrete units while the bulk of the material remains

superconducting. Within this group of type II superconductors are high tempera-

ture superconductors. High-temperature superconductivity allows some materials to

support superconductivity at temperatures above the boiling point of liquid nitrogen

(approx. 77◦ Kelvin). As such, they offer the highest transition temperatures of all

superconductors. The ability to use relatively inexpensive and easily handled liquid

nitrogen as a coolant has increased the range of practical applications of superconduc-

tivity [31]. Unfortunately, this higher temperature of operation will make a system

intrinsically noisier, thus high temperature superconductors are not suited for gravity

gradiometer use [27]. Instead, SGGs must use type II low temperature superconduct-

ing material maintained at approximately 4◦ Kelvin in the circuits (loops) within the

accelerometers.

With superconductivity, the Meissner effect, and flux quantization now defined,

an example of a superconducting accelerometer is presented. Suppose a time varying

current is passed through a coil outside of a superconductor. This coil will send

out a field that will induce a surface current on the superconductor. Noting that
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the superconductor will expel all magnetic fields up to a material and temperature

dependent critical field (i.e. the Meissner effect), this surface current will interact

with the current in the coil to produce a repulsive force between the two objects.

Using image theory, it can be shown that the surface current on the superconductor

is equivalent to having an image of the coil within the superconductor itself. This

image coil is exactly the same distance below the surface as the real coil is above it

as shown in Figure 13.

Figure 13: Coil and Image Coil near a Superconductor, taken from [32].

Now the field confined between the coil and superconductor is calculated: B =

µonti, where µo is the permeability of the material (i.e. how susceptible it is to being

magnetized), nt is the turns per meter in the coil and i is the current in the coil.

Recognizing that the total magnetic energy in the system is the field energy per unit

volume times the volume of the space between the coil and superconductor:

Magnetic Energy =
B2

2µo
Acd =

1

2
µon

2Acdi
2 (27)

where Ac is the area of the coil and d the distance between the superconductor and

the coil. Recall that:

Magnetic Energy =
1

2
Li2 (28)
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where L is the inductance. Combining Equations 27 and 28 gives:

L = µon
2Acd+O(d2) (29)

Equation 29 shows that the inductance of the coil is proportional to its separation

from the superconductor surface. Now, if the proof mass is made of superconducting

material and is introduced in the vicinity of the coil, a repulsive force is present as

long as current is flowing. This force is given by:

F =
1

2

∂L

∂d
i2 =

1

2
µon

2Aci
2 +O(d) (30)

where the stiffness of this magnetic spring is determined by coil non-linearities.

Figure 14: Superconducting Accelerometer Schematic, taken from [32].

Now a system where a closed superconducting loop levitates a superconducting

proof mass (Figure 14) is constructed, noting that as the superconducting loop passes

below its transition temperature, the magnetic flux in the superconducting loop re-

mains absolutely stable (by flux quantization) and has no noise on it! Whenever the

proof mass moves due to a change in acceleration, the coil inductance changes and
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the current must change to preserve the original flux in the loop. This new current

now exerts a different force on the proof mass in order to preserve the mass’s location.

This change in current is detected by a device called a SQUID. A SQUID is a Su-

perconducting QUantum Interference Device and is the most sensitive sensor known

to science. It is used to measure the changes in magnetic fields from which changes

in currents can be determined. While the superconducting accelerometer is a sensor

within a sensor, the SQUID’s resolution of around 6.21 × 10−21 Wb(Webers)/
√
Hz

is very accurate [33]. To put this in perspective, the SQUID can sense changes in

magnetic fields approximately 16 orders of magnitude smaller than that produced by

a small refrigerator magnet.

Figure 15: Superconducting Gradiometer Schematic, taken from [32].

Now that the superconducting accelerometer has been presented, the supercon-

ducting gravity gradiometer is easily shown. If two masses and two loops are used

(Figure 15), differential movements in the proof masses can be detected. If both proof

masses move the same distance in the same direction (downwards for example), flux

quantization for each loop requires that I1 and I2 increase. Since these currents flow

in opposite directions through the inductor next to the SQUID, they cancel each other

out and the SQUID measures no change. However, if the masses move in different

directions from one another (or if one moves and the other does not), I1 and I2 will
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be different and the SQUID, because of its location, will pick up the difference in

current. The current difference due to differential movement of the test masses is a

direct result of a gravity gradient [32].

The first superconducting GGI was developed by Dr. Ho Jung Paik, a Univ.

of Maryland professor, in conjunction with the NASA Goddard Cryogenics branch.

This first version of the SGG consisted of three orthogonal pairs of superconducting

accelerometers, each capable of measuring linear accelerations and the gravity gradient

in all three axes. These superconducting accelerometers are made of high purity

niobium (one of three Type II superconducting elements) that are kept cool in a

Helium bath. Pancake coils are used to levitate the proof masses which are suspended

initially by a weak spring [34].

An equivalent gravity gradient noise of 0.02 Eotvos/
√
Hz has been demon-

strated in a laboratory. While this is much better than rotating accelerometer GGIs,

the Univ. of Maryland superconducting gravity gradient instrument (SGGI) fell short

in intrinsic noise levels. The largest contributors to these noise levels were the earth’s

gravitational field and simulated host vehicle acceleration coupling into the gradient

outputs through various mechanical errors. The instrument was also sensitive to ther-

mal fluctuations of the helium bath, liquid helium motion and boiloff, and particle

heating. Most errors could be controlled by precise design and alignment of the in-

strument or removed by measuring the disturbances (similar to techniques used in

the rotating accelerometer GGIs). While NASA had interest in testing the SGG in

space, funding was not available for such a mission [34].

Updates to the SGGI have involved making it operable in a moving base envi-

ronment and include revised angular accelerometers for measuring the gradient along

a single axis while using three linear accelerometers to correct for residual coupling

to linear acceleration due to imperfect mass balances. This device, shown in Figure

16, is known as the UM-SAA (University of Maryland Superconducting Angular Ac-

celerometer). To eliminate the thermal sensitivity issues, the updated SAA is cooled
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Figure 16: University of Maryland SAA, taken from [35].

by a closed cycle refrigerator based on a dual-stage pulse-tube cold-head known as

a cryostat (Figure 17). The pulse-tube has no reciprocating piston in the cold-head

thereby greatly reducing the harmonics of pressure pulses [35].

Figure 17: University of Maryland Cryostat, taken from [35].

The most recent University of Maryland airborne SAA has an estimated error of

approximately 0.3Eo with a gradient production rate of 1Hz [35]. While bandwidth

specifications are not clearly stated in open literature, Lumley et al. [32] cite “best

spatial resolutions of a few hundred meters”.

The High Density Airborne Gravity Gradiometer (HD-AGG) is a another air-

borne superconducting GGI currently in test [36]. Created by researchers from the

University of Maryland, University of Western Australia, Canadian Space Agency
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and Gedex, the HD-AGG is a gradiometer designed to be carried in typical geolog-

ical survey aircraft (likely the Cessna Grand Caravan) and has similar dimensions

to airborne rotating accelerometer GGIs. Using licensed technology from the Cana-

dian Space Agency, Gedex added an external disturbance isolation platform, known

as the GeoMIM, to the sensor. Similar isolation platforms are found on the Space

Shuttle [37]. The HD-AGG has reportedly achieved a gravity gradient error variance

of less than 1Eo for measurements made every second -even in moderate turbulence

(1m/s2). Main [38] cites spatial resolutions of 60m at fixed wing survey aircraft

speeds. As such, De Beers entered a strategic agreement with Gedex in 2006 for use

of the HD-AGG in diamond detection [39].

Rounding out the list of superconducting GGIs currently in test is the ARKex

Exploration Gravity Gradiometer (EGG). The EGG, shown in Figure 18, was de-

veloped by Dr. John Lumley at Oxford Instruments Superconductivity Ltd with

assistance from ARK Geophysics Ltd (now a part of ARKeX) and was set to enter

a trial deployment sometime in 2008 [26]. Though exact details of the EGG are not

published, it likely uses technology from the UM-SAA and the University of Western

Australia’s Orthogonal Quadrupole Responder (UWA OQR). Data from lab testing

indicates similar Tzz error variance, noise properties, and gradient production rates

as the HD-AGG [12].

Figure 18: ARKeX EGG, taken from [40].
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Atom Interferometer Gravity Gradiometer. Atom Interferometer GGIs are

based on quantum particle-wave duality. According to quantum mechanics, atoms

behave like waves, as does light. Therefore, an interferometer (a device that shows

the pattern of interference created by the superposition of two or more waves) that

examines the properties of these atom-waves can be constructed. Because atoms have

a finite mass, they are extremely sensitive to changes in gravity. In an Atom Interfer-

ometer accelerometer, “beams” of atoms are split into two parts via a beamsplitter

and then allowed to travel a finite distance. If gravity is acting on these atoms as they

travel over a certain length (i.e. the atoms are under the influence of gravity), the

interferometer will pick up a phase shift that will affect the phase and/or frequency

of the measurements [41].

The Stanford University Atomic Interferometer Gradiometer is a joint effort

between Stanford University and the NASA Jet Propulsion Laboratory. It is cur-

rently a ground based sensor that will soon be tested as part of an all-atom, gravity-

compensated inertial navigation system. The sensor will be mounted inside an RV

and driven around the country to measure INS drift under realistic conditions. The

gradiometer itself uses two quantum gravity accelerometers located a certain fixed

distance apart (Figure 19). Inside these accelerometers, cooled Cesium atoms are

condensed into a small cloud in a magneto-optic trap (MOT). The MOT, shown in

Figure 20, consists of three pairs of counter-propagating laser beams along three axes

centered about a non-uniform magnetic field and can collect up to 109 atoms [41].

After these atoms are collected, further cooling slows them to an RMS velocity

of a few cm/s. The cold atoms are then launched vertically into an atomic-fountain

so that the sensors have twice the available interaction time with the atoms for a

given height. The atom interferometer, shown in Figure 21, is made up of Raman

transitions between two hyperfine ground states with a π
2
− π − π

2
pulse sequence.

The first pulse creates an equal superposition of atoms in two hyperfine ground states

(beam splitting). The second and third pulses redirect and recombine the atom-wave.
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Figure 19: Schematic of the Stanford/JPL AI Gradiometer, taken from [42].

Figure 20: Magneto-Optic Trap

If gravity is acting on the atoms, their paths will be different and a phase shift will

occur.

This phase shift is given by ∆φ = 2krgT
2
i , where Ti is the interrogation time

(the time between light pulses), kr is the Raman laser wave number and g is gravity.

Gravity gradients are sensed and quantified when there is a mismatch between the

readings of two fixed position accelerometers. Laboratory testing of the Stanford/JPL

AI GGI has shown gravity gradient sensitivity of 10Eo/
√
Hz, though improvements

are expected [41]. It should also be noted that the gradiometer is approximately
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Figure 21: Atom Interferometer

1.25m tall (Figure 22) and also requires a fairly bulky array of control and laser

frames, though efforts are being made to compact the system.

Figure 22: Stanford/JPL AI Gradiometer Dimensions
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Navigation and Terrain Avoidance via Gravity Gradiometry - Previous

Works

The use of GGIs as navigation aids has been investigated since the 1960s. Initial

research efforts focused on real-time measurement of the gravity anomaly to provide

improved unaided inertial navigation accuracy. Up until recently, there has been

relatively little gravity gradiometer map-matching based aircraft navigation or ter-

rain avoidance research published in open literature. In the mid 1970s, Metzger and

Jircitano [43] presented an investigation into using gravity and gravity gradient map-

matching to update an INS. Host vehicle velocities of up to approximately 250m/s

were examined and it was found that gravity gradients provided better results due to

better signal uniqueness.

In the mid 1980s, Bell Aerospace Textron began development on a system for

enhanced passive submarine navigation. The system was to also provide real-time

underwater terrain maps in areas where accurate terrain and obstacle data may be

limited. Around that time, Affleck and Jircitano [44] proposed an INS that received

position updates from a full tensor gradiometer/map-matching algorithm. The study

was carried for an aircraft with a velocity of 100m/s and altitudes that ranged from

100-400m with promising results. A ship based navigation performance analysis was

executed as well, also with encouraging results. However, very little detail about the

navigation algorithm was given - likely due to the proprietary nature of the work. In

1994, Jircitano and Dosch [45] patented a Gravity Aided INS (GAINS) using a GGI

and a vertical gravimeter for covert submarine navigation. Shortly thereafter, White

and Jircitano patented “gradiometer based terrain estimation” [46]. The system(s)

came to fruition in the mid 1990s and is known as the Lockheed-Martin Universal

Gravity Module (UGM). The UGM consists of gravimeters and gravity gradiometers

and implements a gravity map-matching algorithm to passively bound INS errors. It

can also provide real-time underwater terrain maps based on estimation techniques

applied to existing databases. In 1998, the UGM was successfully tested on the USS

Memphis fast attack submarine [47]. Likely due to the covert nature of the business,
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more recent information on the UGM or Jircitano’s work was unable to be found in

open literature.

Archibald [48] took a different map-matching approach for his PhD disserta-

tion by using a neural network based map-matching algorithm to correlate gravity

gradiometer measurements to an existing map. While his gradiometer model was rel-

atively simple, his method matched points among large amounts of geophysical data

and could be used as an acquire mode in a staged map-matching scheme.

In 1995, Gleason [23] presented a method to optimally generate gravity gradient

maps and discussed the effects of gradiometer filtering in a terrain avoidance scenario

as well as many other practical issues of a GGI-based map matching scheme. His

work was the first found to address GGI sampling rate, gradient production rate,

noise, and bandwidth in detail.

Blaylock et al. [49] then presented a terrain avoidance method using a gravity

gradiometer (theoretically) on board an F-16. Likely an extension of Jircitano’s work,

the paper did not go into detail about an actual terrain avoidance algorithm. It did,

however, present some estimated gradiometer performance requirements and various

GGI signal levels as modeled obstacles were approached. Additionally, very little

information was given on solving the inverse problem of calculating obstacle range

from gravity gradients.

Though he did not use a map-matching algorithm, Jekeli [50] showed that fu-

ture high accuracy IMUs could provide near GPS accuracy (5m error after 1 hour

of dead reckoning) if the gravity error was compensated with a full tensor gravity

gradiometer providing 1s updates with 0.1Eo of RMS noise. The premise is that

if highly accurate accelerometers and gyroscopes are used, errors due to bias, scale

factor/misalignments, platform tilt, white noise and random walk become very small

relative to errors from uncompensated gravity. His research is an integral part of

the DARPA Precision Inertial Navigation Systems (PINS) program. While this is

arguably the more elegant and simpler approach to GGI based navigation, dead reck-
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oning with this system still produced levels of position error that, over time, could

hamper mission effectiveness. However, Jekeli also explains the drawbacks of matching

GGI measurements to a pre-existing map. He states that worldwide map coverage,

particularly in remote or mountainous areas is very limited. Also, the accuracy of

gravity gradient maps is derived from major surveying efforts that are not easily aug-

mented when improved accuracy is required. Finally, he cites the largest map-making

hurdle to overcome: “the required gravitational accelerations are the horizontal com-

ponents of the gravitational vector at altitude (for aircraft navigation), whereas the

data typically are vertical components on the Earth’s surface (being the most easily

measured)” [50]. The concerns are similar to those expressed in the early days of TRN

(such as TERCOM) [2]. If the map making issues mentioned herein are solved, the

following question is posed: If a gradiometer is providing INS gravity compensation

and is already present within the system, why not use it to give map-matching based

updates to the INS as well? This could potentially give the best of both worlds - low

INS error under dead reckoning and the ability to correct the growing error over time.

Most recently, Richeson [51] provided an in-depth study of passive navigation via

gravity gradient map- matching by developing an INS model that used an Extended

Kalman Filter (EKF) to integrate gravity gradiometer and gradient map information

in a position-updating algorithm. He showed that a gradiometer providing 1s updates

with 0.001Eo of noise allowed a map-matching algorithm to meet GPS performance

levels. While his research neglected terrain effects by focusing mainly on high altitude

(20km) and high velocity (2km/s) scenarios seen by a hypersonic vehicle, an estima-

tion of several important GGI signal threshold requirements, presented in Chapter 3,

were deduced from his work. A schematic of Richeson’s navigation system is shown

in Figure 23.

This research aims to advance knowledge and understanding of GGI-based air-

craft navigation and terrain avoidance by more rigorously modeling the GGI and

examining the signal itself over a wider range of flight conditions than previously

studied. Note that the navigation portion of this study will focus on signal usefulness
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Figure 23: Richeson’s Proposed Navigation System, taken from [51].

in map-matching scenarios rather than utility for INS gravity error compensation.

Additionally, terrain avoidance scenarios involving a variety of hazardous obstacles

will be examined in search of a useable impact warning threshold.
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III. Methodology

Overview

To determine the feasibility of GGI based passive navigation and terrain avoid-

ance, a buildup approach to simulating the GGI signal will be accomplished, followed

by characterization of the signal level needed to successfully navigate or avoid terrain,

and ultimately culminating in a comparison between required and achieved signal

levels. First, it is desired to bound the performance metrics of GGI based navigation

and terrain avoidance by simulating the GGI signal in the best and worst case sce-

narios. In a basic sense, these scenarios will be addressed by using areas with rapid

terrain changes and areas with relatively low levels of terrain changes (i.e. mountain-

ous versus flat terrain). A realistic representation of the earth’s gravity gradients in

these test areas will then be found via a combination of modeling techniques. Once

acceptable maps have been generated for all test conditions, the simulated GGI signal

will be determined by manipulating values from these maps with appropriate filter-

ing and noise which mirror current or near-future GGI performance. Finally, the

GGI signal, it’s ability to be correlated to the original gradient maps, and ultimately,

it’s usefulness for navigation will be investigated qualitatively and by metrics based

on previous works. A simple case study on the threshold signal levels indicating an

imminent terrain collision will be accomplished as well. All work herein will be ac-

complished in Matlabr using the Microsoft Windows Vista 64 operating system on an

Intel Core2Duo processor at 3GHz with 8GB of RAM. All code used in this research

can be found in Appendix A.

Gravity Gradient Maps

Before the signal produced by the GGIs can be simulated, representative maps

of gravitational gradients produced by the earth must be computed. The method

chosen for map generation is the combination of gradients derived from the Earth

Gravitational Model 1996 (EGM96) and gradients derived from a frequency domain

based technique similar to the rectangular prism method shown in Chapter 1. The
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EGM96 gradients will be used to account for long wavelength gravitational effects

that generally correspond to anomalies well beneath the earth’s visible topography

while the rectangular prism-like method will be used to model terrain effects. The

total gravitational gradient disturbance model used in this study is given by Tij =

TijEGM96
+ TijTerrain

.

It must be stressed that these methods do not give perfect values for gravity

gradients (nor do any methods at this time) but can be calculated relatively quickly

and do represent realistic trends that should be seen by a GGI. It should also be

noted that Tij (the disturbing potential) and Uij (the normal potential) can be defined

differently depending on the application. For example, the oil and mining industries

will often generate a terrain gradient model based on the assumption of constant

terrain density and treat it as a part of Uij in order to subtract it out and find

density changes within the terrain. For navigation purposes, terrain generated gravity

gradient information is a requirement. Knowledge of what corrections have been

applied to map should be obtained when using gradient data from an outside source.

For example, if a GGI based map-matching navigation system database were loaded

with gravity gradient data that, unbeknownst to the user, had terrain effects removed,

the system would be rendered useless.

Earth Gravitational Model 1996. As previously mentioned, gravitational

potential outside of the attracting masses follows Laplace’s equation [6]. Spherical

harmonics are the angular portion of an orthogonal set of solutions to Laplace’s equa-

tion (represented in spherical coordinates). This set of solutions is linear, thus the

gravitational potential (or disturbing potential) may be modeled as some truncated

series of spherical harmonics given below [52]:

T (r, φ, λ) =
GM

ae

Nmax∑
n=2

n∑
m=0

(a
r

)n+1

(Cnm cosmλ+ Snm sinmλ)P nm(cos φ) (31)
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where r, φ, λ are the geocentric distance, lattitude and logitude, respectively, GM is

the product of the gravitational constant and the earth’s mass, ae is the semi-major

axis of the reference ellipsoid, Nmax is the maximum degree of the spherical harmonic

expansion, n,m are the degree and order, Cnm, Snm are the normalized geopotential

coefficients and P nm(cos θ) is the normalized associated Legendre function (Legendre

functions are canonical solutions to the general Legendre differential equation that is

encountered when solving Laplace’s equation in spherical coordinates).

To date, there are a variety of global geopotential models which express the

Earth’s potential field in terms of spherical harmonic coefficients. These models are

derived from satellite orbit tracking, terrestrial gravimetry, satellite altimetry, or air-

borne gravimetry (or a combination of these and other methods) and used to compute

a gravimetric geoid [53]. The geoid (as it pertains to earth) is defined as the equipo-

tential surface of the earth’s gravity field coinciding with the mean sea level (MSL) of

the oceans [54]. In very broad terms, the geoid is a mathematical figure of the earth’s

surface defined by gravitational measurements, as opposed to the smooth surface of

a reference ellipsoid such as the WGS84 ellipsoid (see Figure 24). In other words,

it is a surface which best fits the mean sea level without winds, ocean currents, or

other disturbing forces. While the geoid and ellipsoid surfaces end up being similar in

practice, the geoid surface varies, or undulates, approximately +85m to -106m with

respect to the WGS84 reference ellipsoid and can change slightly depending on the

method used to calculate the geoid.

Figure 24: Exaggerated Illustration of the Geoid, Ellipsoid, and Topography.
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One of the most commonly used models is EGM96. The EGM96 geopotential

model is a composite solution consisting of spherical harmonic coefficients to degree

and order 360 (n and m in Equation 31, respectively). EGM96 is made up of data from

various contributors and completed by a joint effort between the National Imagery and

Mapping Agency, NIMA (now the National Geospatial-Intelligence Agency, NGA),

the NASA Goddard Space Flight Center and The Ohio State University. Some of

the data sources include: gravity data from NIMA obtained by airborne surveys and

other gravity collection processes, data from the GEOSAT Geodetic Mission (a US

Navy satellite with a RADAR altimeter capable of measuring distances to the sea

surfaces within 5cm), and data from the ERS-1 satellite [55].

The resolution of a particular model is given by πR/n where R is the earth’s

average radius and n is the harmonic degree of the model. Using R = 6371000m, the

spatial resolution of the EGM96 model is approximately 56 km. Since the resolution

of the EGM96 and rectangular prism maps often differ, a spline interpolation is often

applied when fitting the EGM96 data to other grids. To better illustrate the shape of

this particular geoid, EGM96 undulations for a tide-free system, with respect to the

WGS84 ellipsoid, are shown in Figure 25.

Figure 25: EGM96 Geoid Undulations with respect to the WGS84 Ellipsoid.
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The five independent EGM96 gravitational disturbance gradients were calcu-

lated, using the parameters listed in Table 1, via modified freeware using the following

relationships [53,56]:

TxxEGM96
=
GM

ae3

Nmax∑
n=2

n∑
m=0

(ae
r

)n+3

(Cnm cosmλ+ Snm sinmλ)× (anmP n,m−2(sinφ)

+ [bnm − (n+ 1)(n+ 2)]P nm(sinφ) + cnmP n,m+2(sinφ)),

(32)

TxyEGM96
=
GM

ae3

Nmax∑
n=2

n∑
m=1

(ae
r

)n+3

(Cnm cosmλ− Snm sinmλ)× (dnmP n−1,m−2(sinφ)

+ gnmP n−1,m(sinφ) + hnmP n−1,m+2(sinφ)),

(33)

TxzEGM96
=
GM

ae3

Nmax∑
n=2

n∑
m=0

(ae
r

)n+3

(Cnm cosmλ+ Snm sinmλ)× (βnmP n,m−1(sinφ)

+ψnmP n,m+1(sinφ)),

(34)

TyyEGM96
= −GM

ae3

Nmax∑
n=2

n∑
m=0

(ae
r

)n+3

(Cnm cosmλ+ Snm sinmλ)× (anmP n,m−2(sinφ)

+ bnmP nm(sinφ) + cnmP n,m+2(sinφ)),

(35)

TyzEGM96
=
GM

ae3

Nmax∑
n=2

n∑
m=1

(ae
r

)n+3

(Cnm cosmλ− Snm sinmλ)× (µnmP n−1,m−1(sinφ)

+ ηnmP n−1,m+1(sinφ)),

(36)
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where a, b, c, d, g, h, β, ψ, µ and η are the coefficients of the Legendre functions

and are located in Appendix B. Table 1 summarizes the properties used in the EGM96

based gradient calculations.

Table 1: EGM96 Parameters
Parameter Value

GM 3986004.415× 108m3/s2

a 6378136.3 m

C2,0 Tide Free
Reference Ellipsoid WGS84

It should be noted that the newer EGM2008 model was considered for computa-

tion of the gradients due to its degree and order of 2159 (and corresponding resolution

of approximately 9km) [57]. However, due to the recursive generation used for the

associated Legendre functions, these functions can become unstable at higher degrees

(approximately 2100). Even with algorithms that allow for better stability at high

degrees, preliminary results have shown that the estimation of gravity components

can take a considerable amount of time [53]. Within the scope of this investigation,

the drawbacks of using the EGM2008 model outweighed the increased resolution.

Extended Parker Method. Since terrain effects make up the largest, most

rapidly changing part of the bias removed GGI signal at lower altitudes [23], an

approximation of these effects must be modeled to get a relatively accurate signal

representation for many of the simulation test points. Nagy’s formulae (Equations

8-12) for determining gradients at a point from a single rectangular prism can be

expanded to include the effects of an entire grid of rectangular prisms as follows:

Tij total
=

NM∑
n=1

Tij,n (37)

where NM corresponds to the number of row and column entries on the grid. While

proper use of the rectangular prism method gives good insight into the general behav-

ior of the terrain implied gradients, it can be extremely expensive computationally
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for a large grid. Parker [58] presents a fast frequency domain method of calculating

the potential while Jekeli and Zhu [59] apply it to the computation of gravitational

gradients.

If the surface of the geoid is approximated as a plane and a constant density

contrast is assumed, the gravitation potential due to the volume mass (terrain) of

height h, bounded beneath by the area A (approximated as a 0m MSL plane), can be

written in a form similar to Equation 1:

V = G∆ρ

∫∫
A

h∫
0

1

r
dz′dA (38)

where h = h(x′, y′) and is the terrain height at each point.

According to 2-D Fourier transform theory, if g(x, y) is a finite energy function:

∞∫
−∞

∞∫
−∞

(g(x, y))2dxdy <∞ (39)

Then there exists a 2D continuous Fourier transform pair:

G(f1, f2) = =(g(x, y)) =

∞∫
−∞

∞∫
−∞

g(x, y)× e−i2π(f1x+f2y)dxdy (40)

g(x, y) = =−1(G(f1, f2)) =

∞∫
−∞

∞∫
−∞

G(f1, f2)× ei2π(f1x+f2y)df1df2 (41)

where f1 and f2 are spatial frequencies corresponding to coordinates x and y and = de-

notes a 2-D Fourier transform. Physically speaking, the Fourier transform is a method

to break a function into oscillatory components (i.e. a frequency domain representa-

tion). The inverse Fourier transform sends the function from its frequency domain

representation back into the spatial domain. This technique is particularly beneficial
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because some computations (such as convolution) can be accomplished much faster

in the frequency domain.

If the assumption is made that A spans from −∞ to ∞ in two dimensions is

made, the Fourier transform of V becomes [59]:

=(V ) = G∆ρ

∫∫
A

h∫
0

=
(

1

r

)
dz′dA (42)

which, after using polar coordinates, can be expressed as:

=(V ) =
G∆ρ

2πf 2
e−2πfz

∫∫
A

(e2πfh(x
′,y′) − 1)e−i2π(f1x′+f2y′)dA, f 6= 0 (43)

where f =
√
f 2

1 + f 2
2 . By expanding e2πfh(x

′,y′) in Equation 43 via a Taylor series,

=(V ) becomes:

=(V ) = 2πG∆ρe−2πfz

∞∑
n=1

1

n!
(2πf)n−2=((h(x′, y′))n) (44)

To obtain the gradients from the potential, a frequency domain relationship provided

by Jekeli [60] is used:

=(Vij) = µij=(V ) (45)

Recall that V was defined as the potential due to some arbitrary mass volume. If the

mass volume is defined as the terrain above the geoid, Equation 45 becomes:

=(Tij terrain
) = µij=(T terrain) (46)
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where:

µ11 = −(2π)2f 2
1 , µ12 = −(2π)2f1f2, µ13 = −i(2π)2f1f ,

µ22 = −(2π)2f 2
2 , µ23 = −i(2π)2f2f ,

µ33 = (2π)2f 2 (47)

By applying an inverse Fourier transform to the frequency domain representation of

Tij in Equation 46, the terrain implied gravity disturbance gradients are found:

Tij terrain
= 2πG∆ρ=−1

(
µije

−2πfz

∞∑
n=1

1

n!
(2πf)n−2=((h(x′, y′))n)

)
(48)

In practice, some assumptions regarding Equation 48 must be made. First, A is a

finite area corresponding to the area of the elevation grid thus Equation 48 becomes an

approximation. Also, the assumption is made that Fourier transforms of the powers

of h(x′, y′) exist. Since h is given at discrete points in the elevation grid (Figure A.1),

discrete approximations of the continuous Fourier transform are used. Furthermore,

a finite Taylor series expansion is also used when evaluating Equation 48. Under

the assumption that h(x′, y′) is a discrete and periodic function, the Fast Fourier

Transform (FFT) can be applied:

Tij terrain
(p1, p2) = 2πG∆ρFFT−1

(
µije

−2πfp1,p2z

∞∑
n=1

1

n!
(2πfp1,p2)n−2 FFT (hn)p1,p2

)
(49)

where p1 = 0, ...,M1 − 1, p2 = 0, ...,M2 − 1, and M1, M2 are the total number of
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samples in the x and y directions, respectively, with:

fp1,p2 =
√
f 2

1p1
+ f 2

2p2
,

f1p1 =
p1

∆x′M1

, f2p2 =
p2

∆y′M2

, for p1 = 0, ...,
M1

2
− 1, p2 = 0, ...,

M2

2
− 1,

f1p1 =
p1 −M1

∆x′M1

, f2p2 =
p2 −M2

∆y′M2

, for p1 =
M1

2
, ...,M1 − 1, p2 =

M2

2
, ...,M2 − 1

(50)

where ∆x′ and ∆y′ are the sample intervals in the x and y directions, respectively. For

a derivation of the spectral component’s conjugate symmetry satisfaction requirement,

refer to [59].

Unfortunately, there are three drawbacks of using the method based on Parker’s

work. First, the assumption of discrete and finite data causes biases in the diagonal

components of the gradient tensor [61]. Second, the computation point, or gradiome-

ter altitude, must be held constant. Furthermore, the gradiometer altitude must

also be above the highest elevation in the grid. In other words, for AGL type map

generation, this method will not produce reliable results and a rigorous rectangular

prism method must instead be used. While the drawbacks of this method have been

highlighted, the primary advantage is a rapid reduction in computation time of the

gradients maps. Table 2 shows the computation times for producing full tensor grid-

ded gravity gradient data via the rectangular prism and Parker methods. For more

information regarding various map making techniques, refer to [61] and [62].

Table 2: Gridded Gradient Computation Time Comparison
Grid Number of Points Rectangular Prism Parker’s Method

Time Time
3◦ x 3◦, 1 arc min 32761 2640s 7s

2◦ x 2◦, 3 arc sec 5764801 DNF∗ 650s
DNF=Did Not Finish - simulation was terminated after 72 hours
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Figure 26: Example Elevation Grid.

Using 2◦ by 2◦ SRTM Digital Terrain Elevation Data (DTED) supplied by

the NGA, discrete elevation grids with approximately 90 meter grid spacing (3 arc

second) will be constructed. Using a flat-earth approximation, the “bottom” of the

bounding plane is defined by 0 meters MSL which is assumed to be located on the

EGM96 geoid surface. Consequently, the topographical surface is the terrain height

of each grid cell in meters above MSL. A small sample of the discrete elements used to

compute gradients due to terrain is shown in Figure A.1. For this method, a constant

terrain density of 2.67g/cm3 is assumed. This is considered by geologists to be the

average terrain density. As previously mentioned, geological surveys have shown that

actual terrain mass has varying density. To mitigate this effect, the assumption that

the modeled gradient maps represent truth is made for this study.

At low altitudes, much of the gradient disturbance signal is caused by the terrain

in the immediate vicinity. As such, relatively small grid sizes can be used to capture
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most of the terrain effects. Zhu [61] showed that at an altitude of 10m above the

maximum altitude of a relatively rough grid, an area extent of a half degree was

needed to achieve an accuracy of 1Eo. However, as altitude increases, the area of

influence on the signal from the terrain will increase. Be that as it may, the gradients

from the terrain are also falling rapidly as the altitude increases. For this study, it is

assumed that the grids are adequately sized for reliable terrain gradient results. To

minimize gradient errors caused by grid edge effects, only the central-most portions

of the gradient grids will be used for simulations.

Gravity Gradiometer Modeling

While gravity gradiometers designed for airborne surveys are inherently com-

plex, the three main drivers of the signal they produce are gradient production rate,

bandwidth after filtering, and noise. Because modeling the inner workings of a GGI

are beyond the scope of this feasibility study (and often proprietary), the method

used to simulate the signal will involve manipulation of the gradient maps. To get

actual gradient values from the map, a table lookup function, based on the velocity of

the GGI host vehicle that is traveling across the map, is performed at the appropriate

sampling rate using Simulinkr. If the location falls between grid points, a spline

interpolation is used [63]. Next, appropriate noise with respect to the sensor gradient

production rate will be added to the gradient maps [64]. Finally, a low pass filter

with similar specifications to those used on gradiometer data will be implemented on

noisy samples taken from the gradient maps to simulate methods of noise reduction.

In essence, this filter will serve to reject higher frequencies, thus smoothing the signal.

Two gradiometers were chosen for modeling based on the literature review in Chapter

2.

Noise Generation. As mentioned in Chapter 2, gradiometer manufacturers

claim zero-mean gaussian white noise characteristics for their GGIs over a certain

bandwidth. These specifications are given in terms of a noise spectral density (NSD).
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The NSD is the power of noise over a given range of frequencies. Since the noise

is white, the power is flat over all applicable frequencies. In order to determine the

RMS value of the white noise produced by a GGI before final filtering, the following

relationship is used:

RMS Noise(Eo) =

√(
NSD

(
Eo√
Hz

))2

× 1

2
Gradient Production Rate(Hz),

(51)

where it is assumed that the gradiometer noise spectral density is valid from 0Hz (or

“DC”) to the Nyquist frequency (defined here as 1/2 the gradient production rate).

Once the RMS value of the noise is found, it will be added to the gradient maps via

the “normrnd” command in Matlabr. Since the noise is zero-mean, the RMS values

are equal to the standard deviation, σ.

Filtering. No matter the type of gradiometer, all gradient signals are sent

through a final low pass filter (LPF) to reduce uncompensated noise and to prevent

or reduce aliasing of the signal [23, 25]. One drawback to this type of filtering is a

smoothing effect on the signal. In other words, spatial resolution will be lost for the

sake of noise reduction. The most commonly used LPF in GGI data noise reduction is

known as a Butterworth filter [24,25,61] and its transfer function, H, is given by [65]:

|H|2 =
1

1 +

(
f

fc

)2n (52)

where fc is the cutoff frequency and n is the order of the filter.

An example of a one dimensional Butterworth filter with a normalized cutoff

frequency of 0.4 and varying orders is shown in Figure 27. The frequency spectrum

that is allowed to pass through the filter is known as the passband while the spectrum

that is cutoff is known as the stopband. On an ideal LPF, the terminal slope, or roll off,
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Figure 27: Example Butterworth Filter.

between the passband and stopband would be a vertical line but in practice a physical

circuit cannot generate this type of response. While Butterworth filters tend to roll

off more slowly than other types of low pass filters (such as the Chebyshev) they have

very low ripple characteristics. Note that regardless of the filter order, the magnitude

response of the Butterworth filter is always 3dB down at the cutoff frequency. Also

note the non-constant relationship between frequency and phase within the passband

- one of the drawbacks of the Butterworth filter.

For this research, a digital 7th order Butterworth filter (Visser, Murphy, Lane)

was designed in Matlabr and applied real-time as the simulated gravity gradient

were traversed. Real-time filter application marks a departure from the considerable

post-mission processing that is done with most current GGI data. For navigation, one

does not have the luxury of extensive post-flight processing - the filtered signal must

be available immediately. Real time application of the Butterworth filter as signals are

being sampled gives a recursive effect. That is, the filter is auto-regressive in that it

relies on previously filtered samples to compute new values (i.e. feedback). With some

assumptions regarding the impulse response of the filter, it can be considered to give

a moving-average effect. As such, this will inevitably give the real-time filtered signal
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a lag in the time domain as previous values affect the most-recent one. Additionally,

the non constant phase lag of the Butterworth filter will cause a distortion in the

already lagging filtered signal and may be an issue for a map-matching algorithm.

The filter function of the Butterworth LPF has the following general form:

x′(i) =
N∑
k=0

akx(i− k)−
N∑
l=1

blx
′(i− l), (53)

where ak and bk are the filter coefficients, x(i) is the i-th raw sample, x′(i) is the i-th

filtered sample, and N is the order of the filter. It is evident that for a 7th order filter,

it will require raw and filtered information from the previous 7 samples. Since filtered

information is unavailable when the filter is initially applied, it is assumed that the

filtered samples are equal to the raw samples for the first 7 samples.

A key point when dealing with filtering on a moving platform is that sensed

wavelengths are a function of velocity, v. The relationship between frequency (in

units of Hz), f , and spatial frequency (in units of cycles/m), fspatial, is given by:

fspatial =
f

v
(54)

where v is the relative velocity between the sensor and the object being measured

(in m/s). The corresponding wavelength, λ (in units of meters), is given by:

λ =
1

fspatial
=

1

f
× v (55)

In other words, the slower the host vehicle is moving relative to the ground, the

shorter the wavelength (higher frequency) that the LPF will allow to be sensed. Given

a fixed cutoff frequency, this gives the most resolution and is why airborne gravity

gradient surveys are generally flown as slow as safely possible. Likewise, the faster the

relative velocity, the less spatial resolution (again assuming that the cutoff frequency
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of the filter is held constant). To keep high resolutions at higher velocities, the obvious

choice is to increase the cutoff frequency of the filter. This has two major down sides.

First, the amount of noise manifesting itself into a signal is generally higher at high

frequencies and can quickly render the signal useless. Second, (assuming that the

measurement device is making discrete samples) if the cutoff frequency is raised to a

point where it becomes close the the sampling frequency, fs, a phenomenon known

as aliasing can occur. Aliasing is the inability to distinguish different parts of the

frequency spectrum of a signal due to sampling rate restrictions. It is caused by

having frequency content of a signal that is ≥ 1

2
fs. For example (Figure 28), the

function sin((2π − 0.6)t) has a frequency of 1Hz. If it is sampled at ≤2Hz, no

unique frequency measurement can be reconstructed and the higher frequency signal

can appear as, or alias to, a lower frequency. If the signal is sampled at a rate

more than twice the maximum frequency content of the original signal, the signal can

be reconstructed. This is known as the Nyquist condition and, in addition to noise

considerations, also drives GGI filter design. In practice, it is desired to sample the

signal at approximately 5 times the frequency content of the signal to better capture

magnitude and energy information. It should be noted that anti-aliasing filters are

applied before the signal is sampled (or before the signal is downsampled) and may

be one of several filters in the sensor. Additionally, the Nyquist frequency is defined

as one-half the sampling rate of a discrete signal sampling system. In the case of

gradiometers, raw accelerometer measurements are made at very high rates, some

over 100Hz [22]. However, after averaging, internal filtering, scale factor correction

and other noise reduction techniques, useful gradient information is produced on the

order of 1Hz [12].

In this study, it is assumed that the primary anti-aliasing filter has already

been applied and the LPF used here is for signal noise reduction. Furthermore, it is

assumed that host-vehicle gradient contributions are exactly known and have been

removed from the signal. Table 3 summarizes the gradiometer noise and bandwidth

specifications, based on the literature review in Chapter 2, used in the simulations.
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(a) fs=1Hz, Nyquist condition not met, aliasing present

(b) fs=2.5Hz, Nyquist condition met, no aliasing

Figure 28: Illustration of Aliasing and the Nyquist Condition.

GGI1 is a lower noise sensor that represents the more optimistic end of gradiometer

performance expected to be available within a decade. Likewise, GGI2 is the higher

noise sensor and represents the level of performance that has already been demon-

strated in tests. Subsequently, GGI1 and GGI2 may be referred to as “low noise” and

“noisy” sensors, respectively.

Table 3: GGI Specifications
GGI NSD fs RMS fc RMS Noise

Noise after Filtering
1 0.223Eo/

√
Hz 1Hz 0.158Eo 0.2Hz 0.1Eo

2 2.23Eo/
√

Hz 1Hz 1.58Eo 0.2Hz 1.0Eo
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Gradiometer Model Verification. Since no real-time filtered gravity gradiome-

ter data is published in open literature, a build-up approach using available data will

be used to validate the GGI sensor model. First, to ensure Parker’s method is im-

plemented correctly, results from the method, using a 20th order expansion, will be

validated against gradients from the summation of the rigorous calculations of each

rectangular prism’s contribution to the overall gradient. These rigorous calculations

are a summation of each prism’s effect calculated via Equations 8-12. A 330 × 260km,

1 arc minute spaced (∼ 1.8km) grid will be used for this comparison. The fairly large

1 arc minute spacing was chosen due to the computational expense of the rigorous

rectangular prism method. As a final validation of the terrain implied gradient map

making technique, results will be compared to those derived by Zhu and those cal-

culated by Bell Geospace for a track surveyed by an Air-FTG gradiometer during a

flight in 2004. Zhu’s DEM gradient data is based on a numerical integration method

using a USGS provided 1◦ x 1◦, 1 arc second elevation grid. Bell Geospace’s ter-

rain implied gradient data is calculated from SRTM data in the area. Since actual

data was unable to be obtained for the Zhu and the Bell Geospace gradient models,

data from Parker’s method will be calculated along the same track, converted into

the appropriate coordinate frame, plotted and superimposed over a comparison figure

originally taken from Zhu [61]. Since EGM96 data will vary depending on the type of

interpolation used between points, results from the overall gradient modeling effort

will be compared to plots of Bell Geospace Air-FTG survey data in a manner similar

to the Parker’s method validation.

For filter and noise validation, the filter’s response to a unit impulse input will

first be examined and compared to expected values found using a method described

by Rorabaugh [66]. According to Rorabaugh, the time at which the maximum value

of a 7th order Butterworth filter’s impulse response occurs should be approximately

4 seconds if a cutoff frequency of 0.2Hz is used. Additionally, the amplitude of this

peak should be approximately 0.4. To validate the noise in the signal, the mean and
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standard deviation of the “normrnd” generated noise will be examined before and

after filtering is applied and should match values listed in Table 3.

Navigation

To determine the feasibility of using a GGI-based map-matching navigation

system, some assumptions about the system will be made in order to better classify

whether the modeled GGI signal exceeds threshold requirements. It is assumed that

the GGI will be used in a navigation scheme similar to those presented by Jircitano [44]

and Richeson [51]. That is, an INS will be used as the primary navigator and it’s

error will be bound by updates from a GGI signal to map matching algorithm. Figure

29 shows a schematic of a generic GGI/map matching updated INS.

Figure 29: GGI-Aided Passive Navigation System Flowchart.

Test Conditions. Two track areas, one with with rapid terrain changes and

and one with relatively low levels of terrain changes (i.e. mountainous versus flat

terrain) were selected for the navigation feasibility simulations. Track 1 (Figure 30a)

is a west-east track beginning just southeast of Monterey, CA, (36.25◦N , 121.5◦W )

in a region of relatively mountainous terrain. This area was selected in part because

Rice University contracted Bell Geospace to fly a gravity gradient survey in that area

in 2004 [67]. As such, airborne gradiometer data is available for that area and may
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(a) Track 1, rough terrain.

(b) Track 2, smooth terrain.

Figure 30: Test Tracks (note contour scale differences).
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be valuable for future navigation research efforts given its vicinity to the Air Force

Flight Test Center at Edwards Air Force Base, CA. Track 2 (Figure 30b) is also a

west-east track located in western Tennessee beginning slightly north of Memphis.

This track, starting at 36◦N , 89.75◦W , was selected as it represents one of the largest

areas of relatively flat terrain in the United States. Note the different scales in Figure

30. The along-track terrain statistics for ∼135km tracks in each area are shown in

Table 4. Should an area of smooth terrain be desired for flight test, the El Centro

complex near the Salton sea could be useful as it contains relatively large stretches of

flat terrain.

Table 4: Along-Track Terrain Statistics
Track Min Max Mean Std. Dev.

1, Rough 78m 1118m 403m 254m

2, Smooth 72m 146m 105m 24m

For each track, straight and level runs with altitudes ranging from 1000-20000m

height above average terrain (HAAT) and velocities from 50-1200 m/s will be simu-

lated for 100 seconds beginning once the filter has had time to produce meaningful

results. These test points were chosen in order to map a wider range of the flight

envelope than has been done in previous studies [44,51]. Note that most conventional

military aircraft generally operate in the 5-10km altitude region at speeds of 100-

300m/s. However, some surveillance aircraft operate at higher altitudes and loiter at

slower velocities, hence the inclusion of 20km altitudes and velocities down to 50m/s.

Additionally, the GGI signal sensed on board a theoretical high speed vehicle may

be useful for future studies, thus 600-1200m/s velocities are also included. A time of

100s was chosen under the assumption that the map-matching algorithm will provide

1 second updates to the INS. Thus, general trends in the signal’s usefulness should be

able to be seen over the course of 100s. Table 5 summarizes the planned test runs.
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Table 5: Test Matrix.
Runs Altitude Velocity (m/s) Remarks

(m HAAT)
1− 6 1000 50, 100, 150, 300, 600, 1200 GGI 1, Rough Terrain
7− 12 1000 50, 100, 150, 300, 600, 1200 GGI 1, Smooth Terrain
13− 18 1000 50, 100, 150, 300, 600, 1200 GGI 2, Rough Terrain
19− 24 1000 50, 100, 150, 300, 600, 1200 GGI 2, Smooth Terrain
25− 30 2500 50, 100, 150, 300, 600, 1200 GGI 1, Rough Terrain
31− 36 2500 50, 100, 150, 300, 600, 1200 GGI 1, Smooth Terrain
37− 42 2500 50, 100, 150, 300, 600, 1200 GGI 2, Rough Terrain
43− 48 2500 50, 100, 150, 300, 600, 1200 GGI 2, Smooth Terrain
49− 54 5000 50, 100, 150, 300, 600, 1200 GGI 1, Rough Terrain
55− 60 5000 50, 100, 150, 300, 600, 1200 GGI 1, Smooth Terrain
61− 66 5000 50, 100, 150, 300, 600, 1200 GGI 2, Rough Terrain
67− 72 5000 50, 100, 150, 300, 600, 1200 GGI 2, Smooth Terrain
73− 78 10000 50, 100, 150, 300, 600, 1200 GGI 1, Rough Terrain
79− 84 10000 50, 100, 150, 300, 600, 1200 GGI 1, Smooth Terrain
85− 90 10000 50, 100, 150, 300, 600, 1200 GGI 2, Rough Terrain
91− 96 10000 50, 100, 150, 300, 600, 1200 GGI 2, Smooth Terrain
97− 102 20000 50, 100, 150, 300, 600, 1200 GGI 1, Rough Terrain
103− 108 20000 50, 100, 150, 300, 600, 1200 GGI 1, Smooth Terrain
109− 114 20000 50, 100, 150, 300, 600, 1200 GGI 2, Rough Terrain
115− 120 20000 50, 100, 150, 300, 600, 1200 GGI 2, Smooth Terrain

121 5000 150 GGI 1, Rough, Form w/KC-10
122 5000 150 GGI 1, Smooth, Form w/KC-10
123 5000 150 GGI 2, Rough, Form w/KC-10
124 5000 150 GGI 2, Smooth, Form w/KC-10
125 10000 150 GGI 1, Rough, Form w/KC-10
126 10000 150 GGI 1, Smooth, Form w/KC-10
127 10000 150 GGI 2, Rough, Form w/KC-10
128 10000 150 GGI 2, Smooth, Form w/KC-10

The Tanker Effect. Since aerial refueling (Figure 31) is an integral part of

military force projection, it is desired to know if and by what amount the presence

of a large tanker aircraft in the vicinity of the GGI carrying aircraft will corrupt the

GGI signal. While it typically takes approximately five minutes to refuel a fighter

size aircraft, these aircraft will often stay in formation with the tanker for extended

periods of time, especially during transit to forward locations.
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Figure 31: A KC-10 Offloading Fuel to an F-22 Raptor.

To model the gravitational gradient effects of a tanker aircraft, a simple rect-

angular prism model of a McDonnell Douglas KC-10 is created based on dimensions

derived from Figure 32, taken from [68]. It should be noted that the volume calcula-

tion is only an approximation based on the relative dimensions of the KC-10. Once

the approximate volume is known, a typical heavy weight for a KC-10 in flight is

used to calculate the average density. Finally, to obtain a representative rectangular

prism, the dimensions required to obtain the approximate volume were best fitted to

the KC-10 as shown in Figure 33. All estimated properties are listed in Table 6. While

a higher resolution model of the tanker could have been created via more rectangular

prisms, the primary objective here is only to determine if a large object, located next

to and flying at the same velocity as the sensor, having a density distribution and

size that represents a large aircraft, will affect the signal. For this study, the GGI will

nominally be located 30m laterally and co-altitude with respect to the center of the

rectangular prism, but allowed to vary approximately ±5m in all directions to sim-
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Table 6: KC-10 Parameters
Parameter Value
Total Mass 240, 000kg

Approx. Volume 1816m3

Approx. Density 132
kg

m3

Length of Equiv. Rect. Prism 48.8m

Width of Equiv. Rect. Prism 6.1m

Height of Equiv. Rect. Prism 6.1m

ulate relative motion between the two aircraft typically seen during formation flight.

Gradients will be calculated at the 8 points which define the boundary of the GGI

aircraft’s deviation from the nominal position. The mean and standard deviation of

these values will be computed and the “normrnd” command will be used to convert

these gradients into effective white noise which will then be added to the gradient

maps. Next, the filter will be applied as the maps are traversed. The filtered signals

with and without the tanker effects will then be plotted for comparison. Addition-

ally, these runs will only be accomplished at typical refueling/cruise altitudes and

velocities (Table 5).

Figure 32: KC-10 Dimensions.
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Figure 33: KC-10 Transformed into a Rectangular Prism.
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Gradiometer Signal Metrics for Useful Navigation. For a signal to be usable

in a map matching utility sense, it must vary in time at an adequate rate while

maintaining good signal to noise characteristics. If the signal doesn’t vary much with

time, or there is excessive noise, matching it to a map would prove to be an exercise in

futility and tell very little about relative position on the map. In order to determine if

the simulated GGI signal is useful for navigation, several signal examination methods

will be employed. First, the signal will be analyzed graphically to determine if the

along-track signal changes are outside of the noise level from the gradiometer. To

do this, the standard deviation of the noise will be plotted in relation to the mean

value of the true gradient over the run time. Additionally, the overall uniqueness

and clarity of the gradient contour outlined by the GGI will be examined. If less

than approximately 5% of the signal is within the standard deviation of the noise

and the contour is clearly defined, the signal is considered “excellent”. That is, the

signal defines the contour well and the contour varies in time to provide uniqueness.

Should approximately 5-20% of the signal fall outside the noise standard deviation

and the contour remain easily discernable, the signal will be deemed “useful”. If

approximately 20-50% of the signal is outside the standard deviation and contour

uniqueness begins to drop but is still somewhat discernable, the signal is considered

“marginally useful”. Finally, if greater than 50% of the signal is within the noise

standard deviation, the signal is considered “unusable”. That is, the signal is too

noisy to uniquely define the contour. These metrics bear no qualitative data as to

expected navigation performance but are designed to give an idea of the relative map-

matching usefulness of the signal at different flight conditions. While a signal to noise

ratio (SNR) examination was considered, a strong SNR does not guarantee that the

signal varies in time.

Next, a comparison of signal levels obtained from GGI1 will be measured against

those previously proven useful for navigation by Richeson. GGI1 is chosen because

Richeson found that a gradiometer with 1Eo of RMS error (i.e. GGI2) provided

no gains over unaided navigation grade IMUs when used with his map-matching
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Table 7: Richeson’s “GGI Survey” simulation parameters
Parameter Value

Track 45.0◦N , 113.0◦ - 100.3◦W
Velocity 40m/s

Altitude 100m

Gradient Model EGM96 based
dTij/dt(RMS) 0.05Eo/s

algorithm. However, a GGI with 0.1Eo of RMS noise did provide some benefit to the

INS, though not to GPS levels. Though terrain effects were neglected and only EGM96

derived gradient maps were produced, Richeson’s research indirectly classified the

signal threshold required for an improvement in navigation over an unaided navigation

grade IMU, assuming a gradiometer with 0.1Eo of noise [51]. The metrics which define

this threshold are obtained by examination of the average along track signal rate of

change for each gradient, before noise is added.

Figure 34 shows the differences in navigation results from Richeson’s research

using a 0.1Eo GGI and a GPS in combination with navigation grade IMUs. Given

enough time, the GGI aided navigation system bounds the INS error to 10-20m in

the north, east, and down directions whereas the GPS bounds the error of the system

to approximately 0.01m. In other words, the GPS aided system provides results

that are roughly 3 orders of magnitude better that the 0.1Eo GGI aided system.

Since a gradiometer specific map-matching algorithm is still under development at

AFIT, the assumption is made that order of magnitude differences in the noise free

signal time rate of change will correspond to order of magnitude changes in navigation

performance (i.e. the more unique the GGI signal is, the more likely it will be correctly

correlated to a map and the better the navigation performance will be). Based on

Richeson’s results, a signal having a 0.05Eo/s RMS rate of change and a GGI with

0.1Eo of noise will bound host-vehicle position error to roughly 10-20m. Using this

metric, Table 8 was constructed.

It must be stressed that this only holds under the assumption that the gradient

maps are truth. If the maps inherently have error in them (i.e. if GPS was used for
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(a) Navigation results for a 0.1Eo GGI map-matching system pro-
viding 1Hz updates to the INS.

(b) Navigation results for a GPS providing 1Hz updates to the
INS.

Figure 34: Richeson’s Navigation Results: 0.1Eo GGI Map-Matching System vs GPS,
taken from [51].
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Table 8: 0.1Eo GGI Signal Classification Metrics
Navigation Usefulness Signal Time Rate of Change

(Anticipated Error Bounds) RMS, noise free
Unusable < 0.05Eo/s

Marginally Useful (101m MRSE) 0.05− 0.5Eo/s

Useful (100m MRSE) 0.5− 5Eo/s

Excellent (10−1m MRSE) > 5Eo/s

positioning during a survey), navigation performance, in a best case sense, will be

limited to the amount of error present in the maps.

Terrain Avoidance

The use of a gravity gradiometer as a terrain avoidance warning enhancement

is a distinct challenge. According to Gleason [23], the three parameters which dictate

feasibility of the GGI in the role of terrain avoidance are the cutoff frequency of the

filter used to suppress uncompensated error sources, the gradient production rate,

and the final gradiometer noise level. This is compounded by the fact that many

aircraft which maneuver at very low altitudes and could benefit from a passive terrain

avoidance system typically fly at velocities often on the order of several hundred meters

per second. Assuming the GGI bandwidth is fixed, the increase in speed serves to

limit the shortest sensed wavelengths. Table 9 shows velocity versus minimum sensed

wavelength with a gradiometer cutoff frequency of 0.2Hz using the relationship shown

in Equation 55. Since the terrain makes up the higher frequency end of the overall

Table 9: Velocity vs. Minimum Wavelength, fc=0.2Hz
Velocity (m/s) Minimum Sensed Wavelength (m)

50 250
100 500
150 750
300 1500
600 3000
1200 6000

gradient spectrum, filtering high frequencies out in the name of noise reduction may

prove devastating for terrain avoidance. Compounding the loss of spatial frequency
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information is the fact that locating the mass anomaly corresponding to a gradient

is an inverse problem. The following question must be posed: If a gradient change

is sensed, is the change from a large mountain in the distance or from a small tower

that the aircraft in question is about to impact?

Method 1. For this study, the assumption is made that no prior positional

information is known and a GGI with a 1Hz gradient production rate and 0.2Hz

cutoff is being used as the sole device in an attempt to provide a consistent terrain

avoidance warning. In other words, besides GGI-provided information, the user has

little situational awareness. Five runs, using a noise free version of the aforementioned

gradiometer, will be flown from west to east over a perfectly flat surface on which

obstacles of varying size will be placed. The obstacles will be cubic with dimensions

of 25, 50, 100, 250, and 500m, all having a density of 2.67g/cm3. The aircraft will be

flown straight and level at 50m/s on a plane 10m below the top of each object. The

no noise, relatively slow velocity characteristics were chosen to make this a best-case

scenario. If feasibility is not demonstrated for this case, then the addition of noise

and higher velocities will only exacerbate the situation. Figure 35 shows the overall

scenario setup. The geometry will make the Txx gradient of utmost interest since it

Figure 35: Terrain avoidance scenario.
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defines the east-west edges of the anomaly. To potentially counter the inverse nature

of determining the terrain distance from the gradient, the time rate of change of the

Txx gradient will also be examined. A threshold value of Tzz or
dTxx
dt

corresponding to

imminent obstacle impact will be sought. For this study, imminent impact is defined

as 1.5s to impact [13].

Method 2. The premise for this potion of the study is that the navigation

system provides adequate latitude, longitude, and altitude information and that this

position information is used to perform lookups on terrain elevation databases and

gravity gradient maps stored onboard the aircraft. Thus, it is assumed that if a

correct terrain elevation database is used, impact with the modeled terrain can be

prevented (or at least predicted). The GGI’s role then becomes to warn the navigation

system, and ultimately the operator, of unmodeled terrain anomalies which may be

encountered along the flight path. Some examples include communications towers,

water tanks, and other “pop-up” structures that are often constructed before terrain

databases can be updated. Though these structures should be listed in the NOTAMs,

such information isn’t always available in hostile areas. To investigate the feasibility of

the GGI’s ability to properly predict an potential impact with an un-modeled object,

a simple case study using the world’s tallest water tower, listed at 218 feet tall with

approximately 500,000 gallons of water, will be executed (see Figure 36) [69]. Using

Figure 36: World’s Tallest Water Tower
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an assumed weight of 1 US Gallon of water of 3.785kg and 1 USG water = 3785.4cm3,

the density of water was calculated to be approximately 1.0g/cm3. An average density

of 3.9g/cm3 (half that of mild steel) was used for the support prism. The water tower

was chosen because it represents the larger end of the spectrum of un-modeled pop-up

structures. If the gradiometer can predict an impact with it, smaller objects will be

tested. The tower will be modeled with two rectangular prisms, one to simulate the

support and one to simulate the tank. Before the simulation, a frequency domain

analysis will be conducted on the anomaly to determine its signal structure. Then,

runs will be flown from west to east over a perfectly flat surface (excluding the tower).

This geometry will again make the Txx gradient of utmost interest. As before, the

time rate of change of the Txx gradient will be examined. A threshold value of Tzz

or
dTxx
dt

corresponding to imminent object impact (1.5s) will be sought. Figure 37

shows the overall test setup.

Figure 37: Modeling the Unmodeled
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IV. Results and Analysis

Overview

This chapter presents the overall results and analysis obtained from the methods

described in Chapter III. The overall goal is to present data that suggests or disproves

the feasibility of using a gravity gradiometer in the roles of passive aircraft naviga-

tion and terrain avoidance. First, multi-step validation results will be presented to

show that the gradiometer models used in this study are producing signals that rep-

resent real-time measurements of gravity gradients produced by the earth. Next, the

signals’ navigation usefulness over different terrain variety, altitude and velocity will

be evaluated and summarized using metrics developed for this study. Additionally,

the signal effects of flight in the vicinity of a large tanker aircraft will be examined.

Finally, the results of several GGI-based terrain avoidance scenarios will be presented

and discussed.

Model Validation

The model validation effort begins with an examination of results from the

gravity gradient map making process. Figure 38 illustrates the differences between

the gradients from the rigorous rectangular prism summation and from Parker’s

method. Clearly shown is the bias in the diagonal components of the gradient tensor

(Txx, Tyy, Tzz). While these biases are relatively large, they do not affect the overall

shape, or uniqueness, of the diagonal gradients as a function of distance traveled. As

such, these biases are deemed acceptable within the scope of this research. Also shown

is the excellent correlation of off diagonal terms generated via the two methods. It

should be noted that the first and last fifth of the original gradient grids were excluded

due to edge effects that manifested during map generation. All gradient maps used

in the simulations were corrected for edge effects.
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Figure 38: Model Validation - Parker’s Method vs Rigorous Rectangular Prisms.

With a fast method of gradient calculation successfully implemented, a compari-

son of results from this technique are compared to those used by geophysicists. Figure

39 shows the final terrain generated gradient map verification. The data illustrates

terrain implied gradients that were calculated along a track surveyed by an airborne

gradiometer during a 2004 Bell Geospace flight. Note that Γij is interchangeable with

Tij. It must be stressed that since data was superimposed onto a pre-existing plot,

this is a qualitative comparison to ascertain if Parker’s method is working properly.

Based on the plots, is clear that Parker’s method has been implemented successfully

and that the terrain implied gradient maps generated in this study compare to those

generated by geophysicists. Also evident are the biases present on the diagonal com-

ponents of the gradient tensor. The slight mismatch in the off-diagonal components

is likely due to the fact that the exact track coordinates were not known and were

approximated by visual examination of a map.

76



Figure 39: Terrain Effect Modeling verification: Bell Geospace vs. Zhu’s Numerical
Integration vs. Parker’s Method, taken from [61] and modified.

Figure 40 compares the complete gravity gradient model to actual values ob-

tained by a Bell Geospace Air-FTG gradiometer [61,67]. While the gradients are not

an exact match, the trends are clearly predicted by the model. The larger differences

in this figure are likely caused by the gradiometer sensing density anomalies within

the terrain and geology which are not accounted for by the model. As before, the

exact track coordinates were unknown - also likely contributing to the differences. It

must be stressed that this figure illustrates units of 10−9 and any incorrect coding or

other error is likely to skew modeled values considerably more than shown. Based

on these results, it is concluded that the model is producing gradients that represent

realistic values produced by the earth.
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Figure 40: Model Validation - Modeled Gradients vs. Air-FTG Data, taken from [61]
and modified.

Figure 41 shows the frequency response of the 7th order Butterworth filter used

in this study. The gradiometers to which this filter was applied have a gradient

production frequency of 1.0Hz, thus the Nyquist frequency is one-half that (0.5Hz).

As stated in the gradiometer specifications (Table 3), the LPF cutoff frequency is

0.2Hz and, when normalized to the Nyquist frequency, becomes 0.4, as shown in the

figure. Figure 42 shows the impulse response of the filter. As expected, the peak

value is at 4 samples, which, with a sampling rate of 1Hz, corresponds to 4s. Also

noted is the fact that the amplitude matches the predicted value of 0.4 as well. Based

on this simple study, it is concluded that the filter used in this model was properly

implemented.
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Figure 41: Filter validation - Frequency response of a 7th order Butterworth filter
with fc=0.2Hz and fs=1Hz.

Figure 42: Filter Validation - Impulse Response of a 7th Order Digital Butterworth
Filter with fc=0.2Hz and fs=1Hz.

Figure 43 shows the mean and standard deviation of 100 samples of 100 ran-

dom numbers generated using the “normrnd” command in an attempt to validate

the simulated white noise before and after the filtering used for each GGI. Clearly,

the mean noise of both GGIs’ pre and post-filtered signals are approximately zero, as

anticipated. Recall that GGI1 represents a relatively low noise sensor projected to be

available in 10 years and that GGI2 represent a more noisy sensor that is currently

79



in flight test. The standard deviation of GGI1’s pre-filtered noise is approximately

0.158Eo while the output noise is approximately 0.1Eo. Similarly, the standard de-

viation of GGI2’s pre-filtered noise is approximately 1.58Eo while the output noise is

approximately 1Eo. All values are expected and indicate that the noise generation

process and filter are working correctly.

(a) GGI 1 noise.

(b) GGI 2 noise.

Figure 43: GGI Noise Validation.
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Aircraft Navigation Feasibility Results

In an effort to condense the results, only the “zz” (or down-down) component

of the gravitational disturbance gradients will be examined in this section. This

component was chosen because it is the most intuitive as it generally relates to the

shape of the terrain. The remaining independent components (Txx, Txy, Tyy and Tyz)

behave similarly and will offer additional uniqueness to the overall map-matching

effort. Though they are omitted here, the data is available for future research. Plots

of Tzz for all navigation runs (1-128) are located in Appendix C.

Navigation Feasibility via Qualitative Signal Analysis. Tables 10 and 11

summarize the signal characteristics derived from simulation results using GGI1, the

lower noise gradiometer.

Table 10: GGI1 Signal Classification Results - Rough Terrain
50m/s 100m/s 150m/s 300m/s 600m/s 1200m/s

1000m HAAT E E E E U X
2500m HAAT E E E E E U
5000m HAAT E E E E E E
10000m HAAT E E E E E E
20000m HAAT U E E E E E

HAAT=Height Above Average Terrain

Table 11: GGI1 Signal Classification Results - Smooth Terrain
50m/s 100m/s 150m/s 300m/s 600m/s 1200m/s

1000m HAAT E E E E U MU
2500m HAAT MU MU U E E E
5000m HAAT X X X X U U
10000m HAAT X X X X U U
20000m HAAT X X X X MU U

E=Excellent, U=Useful, MU=Marginally Useful, X=Unusable

Figure 44 graphically represents the data from Tables 10 and 11. Clearly shown

is the excellent signal produced by GGI1 at nearly all tested flight conditions when it

is flown over rough terrain (track 1). Note that the low altitude, high velocity signal

degradation is caused by the LPF and will be later discussed. The signal quickly
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(a) GGI1 signal classification results, rough terrain.

(b) GGI1 signal classification results, smooth terrain.

Figure 44: Low Noise GGI Signal Classification Summary (GGI1).
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degrades when the instrument is flown over smooth terrain (track 2), as shown in

Figure 44b. Note the detrimental effects of slower velocities and increasing altitude.

To put these results into real-world terms, most conventional military aircraft would

fall into the marginally useful to unusable regimes if using this GGI over smooth

terrain. Though it can be argued that un-modeled density variations are certain to

exist within and below the terrain and would help to give uniqueness to the signal,

this case represents a worst case scenario where the aircraft may be flying over a deep

ocean or other areas of sparse terrain and relatively constant subterranean density.

Clearly, a more sensitive gradiometer will be required if accurate navigation is to be

maintained in these conditions.

Tables 12 and 13 summarize the signal characteristics derived from simulation

results using GGI2, the noisier gradiometer.

Table 12: GGI2 Signal Classification Results - Rough Terrain
50m/s 100m/s 150m/s 300m/s 600m/s 1200m/s

1000m HAAT E E E E U X
2500m HAAT E E E E E U
5000m HAAT U U U U E E
10000m HAAT X MU U U E E
20000m HAAT X X X MU MU U

HAAT=Height Above Average Terrain

Table 13: GGI2 Signal Classification Results - Smooth Terrain
50m/s 100m/s 150m/s 300m/s 600m/s 1200m/s

1000m HAAT X X X X X MU
2500m HAAT X X X X X X
5000m HAAT X X X X X X
10000m HAAT X X X X X X
20000m HAAT X X X X X X

E=Excellent, U=Useful, MU=Marginally Useful, X=Unusable

Figure 45 graphically represents the data from Tables 12 and 13. Clearly shown

is the overall degradation of the signal produced by GGI2. Over rough terrain, the

signal usefulness has some similarities to GGI1’s performance over smooth terrain.

As expected, the increase in GGI noise has the same effect as increasing altitude or
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(a) GGI2 signal classification results, rough terrain.

(b) GGI2 signal classification results, smooth terrain.

Figure 45: Noisier GGI Signal Classification Summary (GGI2).
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decreasing velocity. In real-world terms, most conventional military aircraft would

fall into the useful to marginally useful regimes if using this GGI over rough terrain.

When GGI2 is used over smooth terrain, the noise level causes a total loss in signal

usefulness for all flight conditions except for a theoretical low altitude, hypersonic

case. These results show that a GGI with 1.0Eo of noise will not be adequate for

all flight and terrain conditions, in agreement with previous works [51]. For added

physical insight, examples of the LPF effect and signals at each level of classification

are now presented.

Figure 46: Low Pass Filter Effect, 1200m/s, 1000m, Rough Terrain.

Figure 46 shows the unique case where high velocity combined with rapid

changes in gradient (high frequency) actually cause a loss in signal usefulness. This

run was completed at 1000m HAAT and 1200m/s (run 6). While the signal may be

able to be salvaged by filtering the true gradient as well, this illustrates the effects of

the low pass filter at high velocities - significant loss of spatial frequency information

in addition to time delay. While no conventional vehicles currently inhabit this flight

regime, it is important to note the importance of including the moving average effect
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that real time signal generation will require. Additionally, this behavior further serves

to validate the overall modeling effort. Addressing these phenomena and optimizing

the LPF for real-time signal generation will challenge future nav-grade gradiometer

and map-matching algorithm designers.

Figure 47: Signal Comparison: Excellent (GGI1) vs. Truth, 300m/s, 2500m, Rough
Terrain.

Figure 47 presents a closer look at the behavior of an excellent signal when

compared to the true gradient. This signal was generated by the lower noise GGI at

2500m HAAT, a velocity of 300m/s and over rough terrain (run 28). Note that while

the time delay is still evident, the signal clearly outlines the overall gradient contour.

Also note that the contour is unique yet is low enough in frequency content such that

the LPF does not discard useful information. This gives foresight into the idea that

a contour matching algorithm may be a good starting point for design of a gravity

gradient map-matching scheme.

Figure 48 shows a useful signal produced by the lower noise GGI in comparison

to the true gradient. This signal was generated at 10000m HAAT, a velocity of
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Figure 48: Signal Comparison: Useful (GGI1) vs. Truth, 600m/s, 10000m, Smooth
Terrain.

600m/s and over smooth terrain (run 83). Note the overall flattening of the true

gradient when compared to the previous case - this serves to reduce the uniqueness of

the signal. As such, GGI1 produces a useful signal by doing a fair job of highlighting

the true gradient contour. While changes changes aren’t captured every second, the

gradient contour is defined by the signal.

Figure 49 shows a marginally useful and unusable signal in comparison to the

true gradient. These signals were generated at 10000m HAAT, a velocity of 300m/s

and over smooth terrain (runs 82 and 94). Note that the true gradient has become

relatively flat and doesn’t change more than 0.5Eo over the entire run. This is a

difficult case for either gradiometer. The lower noise gradiometer (GGI1) produces a

marginally useful signal by doing a fair job of highlighting the true gradient contour.

Even so, since the contour doesn’t change very rapidly, it is more difficult to ascertain

the exact shape of the contour. The noisier gradiometer (GGI2), however, produces

a signal that gives no useful information about the contour shape. For scenarios with

87



Figure 49: Signal Comparison: Marginally Useful(GGI1) vs. Unusable(GGI2) vs.
Truth, 300m/s, 10000m, Smooth Terrain.

relatively sparse terrain (and relatively constant subterranean features), it is likely

that the gradiometer must produce noise an order of magnitude lower than GGI1

(approx. 0.01Eo of error) for the signal to be excellent. This is consistent with

results from Richeson’s high altitude, hypersonic cases [51].

This concludes the qualitative gradiometer signal analysis which has shown that,

as generally expected, higher altitudes, smooth terrain, slower velocities, and increased

noise can significantly reduce the usefulness of the GGI signal. Additionally, the

analysis has shown that LPF settings must considered and carefully chosen so as not to

exclude useful high frequency gradient information when traveling at low altitudes and

high velocities. For a constant noise level, the largest contributor to signal degradation

is the overflight of relatively flat terrain with constant subterranean density. The next

largest contributor to signal loss is an increase in altitude, though slower velocities

are nearly as detrimental. Unfortunately, the most difficult regimes to obtain a useful

signal are also the regimes where most conventional military aircraft operate (50-
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300m/s, 5-10km). In order to ensure an excellent to usable signal is present for

all tested flight conditions, a gradiometer with 0.01Eo of RMS error will likely be

required.

Navigation Feasibility via Signal Time Rate of Change Metrics. Figure 50

shows the signal usefulness envelope based on metrics obtained from Richeson’s sim-

ulations and is a summary of the results shown in Figures C.11-C.15 located in Ap-

pendix C. Recall that these metrics only apply to GGI1 and that the amount of noise

in GGI2 gave Richeson no improvement in navigation performance over an unaided

INS. Immediately evident is the overall signal degradation when compared to the pre-

vious method (see Figure 44), particularly in areas with smooth terrain. As before,

low terrain variance and increases in altitude are the main contributors to signal degra-

dation. At 1000m over both terrain types, all velocities give signals that are at least

marginally useful, with most being useful to excellent. However, the results quickly

change as altitude increase. The signal at 2500m has already drastically dropped for

the slower velocity cases. For the rough terrain, the signal is generally useful, whereas

for the smooth terrain, the signal is only marginally useful for velocities greater than

300m/s. At 5000m, the signal has degraded significantly - only a marginally useful

to useful signal is obtained for the rough terrain case and a largely unusable signal

exists for smooth terrain overflight. Note that at 5000m, faster velocities (600m/s+)

are critical in order to maintain signal usefulness over rough terrain due to the drop in

gradient strength. The signal continues to degrade as the gradients further attenuate

at 10000 and 20000m. The rough terrain signal becomes marginally useful while the

smooth terrain signal is completely unusable. If it is again assumed that most military

aircraft will be operating in the 50-300m/s and 5-10km region of the envelope, the

sensed signal is marginally useful (rough terrain) to unusable (smooth terrain).
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(a) GGI1 Signal Classification Results, Rough Terrain.

(b) GGI1 Signal Classification Results, Smooth Terrain.

Figure 50: GGI1 Signal Classification Summary - Signal Time Rate of Change
Method.
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Figure 51: Signal Comparison: Marginally Useful (GGI1) vs. Unusable (GGI2) vs.
Truth, 300m/s, 10000m, Rough Terrain, Signal Rate of Change Metrics.

For illustrative purposes, Figure 51 shows the signal required for the heart of

the “marginally useful” envelope (300m/s ground velocity, 10000m altitude, rough

terrain). This marginally useful signal, produced by GGI1, is shown in red. For

comparative purposes, the signal from the noisier gradiometer (GGI2) is also shown.

Note how close the GGI1 signal appears to the noise free signal, yet it still produces a

“marginally useful” signal. Also note that GGI2 is able to capture the general shape

of the contour, albeit not as well as GGI1. This gives rise to the question of whether

a revised, gradiometer specific contour based map-matching algorithm could provide

substantial benefits in navigation accuracy.

Figure 52 shows the signal from the gradiometers in the heart of the unusable

portion of the envelope (300m/s ground velocity, 10000m altitude, smooth terrain).

Recall that GGI1 produced a marginally useful signal in this same scenario when qual-

itative metrics were used (see Figure 49). Evident is the fact that the signal changes

very little in time. While slight contour changes may be measured by GGI1, those
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Figure 52: Signal Comparison: Unusable (GGI1 and 2) vs. Truth, 300m/s, 10000m,
Smooth Terrain, Signal Rate of Change Metrics.

changes are likely to take several minutes to appear. Gradiometer accuracy would

need to improve at least one order of magnitude over that of GGI1 (approximately

0.01Eo error) before a usable navigation signal could be obtained from this worst-case

scenario. While these results differ slightly from the qualitative study, results from

both cases suggest that a 0.01Eo gradiometer will be required to ensure a useful signal

for all portions of the envelope, particularly for the conditions that most conventional

military aircraft operate in. That stated, a gradiometer with performance similar to

GGI1 could be used for an airborne navigation feasibility flight test or demonstration

if flown at relatively low altitudes and over rough terrain.

To test the recommended gradiometer specification of 0.01Eo, a run was flown

at 20000m over smooth terrain at a velocity of 50m/s. The results, shown in Figure

53, show the signal produced by this gradiometer at the worst possible test conditions.

The plot shows that signal is marginally useful as it is able to highlight the overall

gravity gradient contour, but it does take time to do so. Also note the gradient scale
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in the figure. Not only does the GGI have to provide a signal with 0.01Eo of error,

but the gradient maps to which this signal will be matched must contain considerably

less error. These are the challenges that must be met to ensure a useful signal in all

flight conditions.

Figure 53: Signal Comparison: Ultra Low Noise GGI (0.01Eo) vs. Truth, Worst Case
Scenario - 50m/s, 20000m, Smooth Terrain.

The Tanker Effect. Figure 54 captures the overall effect of a large tanker

aircraft in the presence of the GGI-carrying aircraft flying at 150m/s and 5000m

HAAT (runs 121-122). Only one figure is presented because the trends are the same

for each run - the tanker essentially biases the signal by approximately 0.45Eo and

adds a slight amount of white noise (σ=0.18Eo) corresponding to relative motion

between the tanker and GGI-aircraft as the formation is maintained.

In no case does the tanker change the usefulness of the signal produced by the

two GGIs. Should GGI performance improve an order of magnitude over GGI1 (i.e. a

0.01Eo GGI), the presence of the tanker may begin to hamper map-matching perfor-
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(a) GGI1 tanker effect, rough terrain.

(b) GGI1 tanker effect, smooth terrain.

Figure 54: Tanker Effect, GGI1, 5000m, 150m/s.
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mance, particularly over smooth terrain. That stated, a GGI specific map-matching

algorithm should be inherently designed to reject biases. It could be argued that

the presence of the tanker is akin to a self-gradient and could be removed similarly.

However, without broadcasting an active signal, the exact position of the tanker is un-

known. Plots of the remaining tanker test cases (runs 123-128) are shown in Figures

C.16-C.18 located in Appendix C.

Aircraft Terrain Avoidance Feasibility Results

The results for the first terrain avoidance method will now be presented. Recall

that no prior positional information is known and a GGI with a 1Hz gradient produc-

tion rate and 0.2Hz cutoff is being used as the sole device in an attempt to provide

a consistent terrain avoidance warning. It should be noted that much of the signal

for the relatively small obstacles used in these simulations is in the higher frequency

(shorter wavelength) portion of the spectrum. As such, the cutoff frequency of the

LPF may present an issue when trying to detect the smaller obstacles. The aircraft is

flying at 50m/s and is level on a plane located 10m below to the top of the obstacle

(see Figure 35). Both the Txx signal and signal time rate of change are examined in

an attempt to determine a usable threshold that indicates imminent terrain collision.

Figure 55 summarizes the GGI signal and signal time rate of change for the

5 runs against obstacles of varying size. Results from the individual runs can be

found in Appendix C, Figures C.19-C.23. The analysis begins by examination of

the simulation using the smaller obstacles (25 and 50m). Given the requirement for

a warning 1.5s prior to impact and a gradient production rate of 1Hz, the worst

possible time for an update is approximately 2.49s prior to the impact. An update

2.49s prior to impact maximizes the time spent without an update by putting the

next update at 1.49s until impact - too late given the threshold used for this study. In

other words, the update at 2.49s prior to impact must contain enough information to

trip a warning to the operator. The figure clearly illustrates that the filtered signal
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(a) GGI Signal.

(b) GGI signal rate of change.

Figure 55: Terrain Avoidance Scenario Summary, GGI signals, 50 m/s, No Noise.
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lags the true gradient considerably and that since most of the smaller obstacles’ signal

intensity is in the high frequency area of the spectrum, it is filtered out. Thus, there

is no useful information about the obstacles at 2.49s. Examination of the results for

the simulation using a 100m cubic obstacle shows that while there is a slight rise in

the GGI signal at 2.49s, it is likely to be buried in signal noise. The results for the

simulation using a 250m cubic obstacle show substantial improvements in gradient

strength and time of detection over previous runs. Finally, as expected, the results

for the simulation using a 500m cubic obstacle show even larger values and rates of

change of the sensed gradient. Unfortunately, the plots also clearly show that there is

no red flag signal or signal rate of change that signifies imminent terrain impact. The

lag and loss of short wavelength information from the LPF are also evident. These

results are not entirely unexpected due to the inverse nature of using gravity gradients

for what is, in essence, ranging information. There are an infinite number of possible

obstacles with different densities and locations that could provide the same signal.

Also note that these runs were accomplished at only 50m/s, a relatively low velocity

in comparison to many terrain following aircraft that routinely fly low-level routes

at 200+m/s. At this point, the investigation moves to an examination of the actual

gradients in order to determine, even if a perfect gradiometer existed, if there is some

signal threshold that gives obstacle ranging information.

Figure 56 summarizes the true Txx gradient and gradient rate of change produced

by the 5 obstacles as the simulation grid is traversed. The plots clearly show that,

even with a perfect gradiometer capable of measuring the true signal, there is no

clear signal or signal rate of change threshold that signifies imminent terrain impact

for these simple scenarios. While the measured gradient time rate of change contains

more information earlier in time than the measured gradients, there is no uniqueness

based on time to impact. If the threshold was arbitrarily set at some value, the user

will get false alarms for larger obstacles and no alarm at all for small objects. Avoiding

a big mountain does no good if the user subsequently impacts a small mound of dirt.
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This is the crux of GGI-based terrain avoidance - without additional information,

ranging information cannot easily be determined with only a gradiometer.

(a) True Gradient.

(b) True gradient rate of change.

Figure 56: Terrain Avoidance Scenario summary, True Gradients, 50 m/s.
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Recall that the second method of terrain avoidance assumes that exact positional

information is known and that gradient and terrain database maps are available.

The role of the gradiometer then is to detect obstacles that were un-modeled on the

gradient and terrain database maps. A large water tower was chosen to represent

a best case un-modeled obstacle. That is, this object is the largest likely to be

constructed quickly enough to avoid being included in NOTAMs or in intelligence

reports. If the gradiometer cannot warn the user of the presence of an obstacle this

size, scenarios with smaller objects such as communication towers will be even less

successful. To better understand the signal structure of the obstacle, the analysis of

this terrain avoidance method begins by examining the Txx gradient produced by the

water tower terrain anomaly in the spatial frequency domain.

Figure 57: Water Tower Spectrum

Figure 57 shows the absolute amplitudes of the gradient as a function of spa-

tial frequency (for continuity, this spectrum was calculated on a horizontal plane 5m

above the top of the tower). The figure shows that most of the signal intensity is

located in the 0.005-0.03cyc/m spatial frequency region (33-200m wavelengths). This
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immediately raises concern because, even at relatively slow speeds (∼ 50m/s), the

minimum wavelength allowed by a LPF with a 0.2Hz cutoff frequency is approxi-

mately 250m (see Table 9). This mirrors the phenomenon seen in the 25 and 50m

obstacles from the previous analysis.

(a) Signal.

(b) Signal rate of change.

Figure 58: Water Tower Scenario, Txx vs time, 50m/s, No Noise.
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The results for the water tower run are shown in Figure 58. As in the 25 and

50m obstacle results, a gradiometer providing gradients at 1Hz and filtering the signal

above 0.2Hz results in the water tower gravitational gradients never being sensed by

the gradiometer until after impact. Also shown are the true gradients produced by the

water tower. If the assumption of a perfect gradiometer is made, the water tower does

produce a signal of approximately 1.0Eo at 1.5s to tower impact. Again the question

arises: is the anomalous gradient from a small tower close-by or a larger un-modeled

object in the distance (i.e. the inverse problem). Even if ranging information were

able to be determined (perhaps by using the terrain avoidance method proposed by

Jircetano [46]), the question of required gradiometer performance arises. To determine

these values, the gradiometer requirements for sensing most of the example water

tower’s spectrum (down to 33m wavelengths) at different velocities are listed in Table

14.

Table 14: Gradiometer Requirements to sense Water Tower
Velocity(m/s) Est. Gradient Production Rate(Hz) Cutoff Frequency(Hz)

50 7.5 1.5
100 15 3.0
150 23 4.5
300 45 9.0
600 91 18
1200 182 36

To further support these estimated gradiometer requirements, it is assumed that

additional information is supplied via a gravimeter in a scheme similar to the Lockheed

Martin UGM. Under the assumption that the UGM provides adequate submarine

terrain avoidance capability and that the gradiometer used within the UGM provides

gradients at 1Hz with a cutoff frequency of 0.2Hz and is traveling at 20knots (10m/s),

gradients are produced every 10m and wavelengths greater than 50m are sensed. By

converting these metrics into equivalent airborne platform requirements based on

velocities, Table 15 summarizes the equivalent gradiometer update rate and cutoff

frequency requirements.
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Table 15: Predicted Gradiometer Requirements for UGM Style Terrain Avoidance
Velocity (m/s) Gradient Production Rate (Hz) Cutoff Frequency (Hz)

50 5 1
100 10 2
150 15 3
300 30 6
600 60 12
1200 120 24

It must be stressed that these update rates and cutoff frequency specifications

must be met without an increase in noise. That is, the gradiometer must have massive

improvements in gradient production rate and LPF cutoff frequency, yet produce sub-

Eotvos noise levels in the signal. In the 300m/s scenario, the necessary gradiometer

noise spectral density for 0.1Eo of noise would be approximately 0.025Eo/
√
Hz, valid

up to half the sampling rate of 30Hz. This is well beyond any estimated performance

levels for future airborne gradiometers. These results highlight the significant chal-

lenge of using a gradiometer based system for aircraft terrain avoidance. Based on

the results from both methods, it has been shown that gradiometer based airborne

terrain avoidance is unfeasible in the near future.

Results Summary

It has been shown that if airborne GGIs can approach 0.01Eo standard devia-

tion of noise, a signal strong and unique enough for map-matching exists for all tested

flight conditions except for those involving extremely high velocities (1200m/s) and

very low altitudes (1000m). This is provided that accurate gravity gradient databases

exist. The necessity of such a gradiometer is driven by the fact that gradient unique-

ness falls rapidly as the host vehicle traverses smooth terrain, increases altitude or

decreases velocity. To adequately measure a gravity gradient contour in a worst case

scenario, the noise level of the instrument must be an order of magnitude lower than

those of gradiometers projected to be available within 10 years. Also, the assumption

of the existence of accurate, high resolution gradient maps cannot go unchallenged.
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While map availability is rapidly increasing through a variety of survey methods,

worldwide coverage, particularly in remote or hostile areas, will likely remain a con-

tingency for quite some time. While it is unlikely that this navigation method can

be widely employed using a gradiometer available within 10 years, the signal analysis

has also shown that a GGI with 0.1Eo of noise could be used in a ground or flight

test demonstration of the technology. This assumes that relatively accurate gravity

gradient maps of the area exist and the test is done at slow velocities, low altitudes,

and over rough terrain. Success in such a test could open the door for more research

and development funding.

The GGI-based terrain avoidance studies have painted a relatively bleak picture

for the method as it pertains to conventional aircraft. Due to bandwidth, gradient

production rate limitations and the inverse nature of the problem, a noise free gra-

diometer failed to provide any useful terrain avoidance information. These tests were

designed as a best case approach to solving the problem and proved that no consistent

signal threshold for imminent terrain impact exists. Should the inverse problem of

ranging dangerous obstacles be solved via a novel method or increased observabil-

ity, real world application of such a scheme would inevitably demand extremely high

gradiometer performance - the likes of which have not been mentioned in open litera-

ture. That stated, research into methods of GGI-based or assisted terrain avoidance

should not be abandoned as they could eventually be used in applications such as

cave navigation or navigation through indoor environments. With the completion

of the results and analysis of this study, the focus now turns to recommending the

future steps needed to make this magnificent instrument the game changer it has the

potential to be.
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V. Discussion

Research Summary

This research represents the first step in a multi-phase approach towards de-

velopment of a gravity gradiometer-based aircraft navigation and terrain avoidance

system. By generating gravity gradient data from terrain and underlying geology,

a realistic representation of gradients produced by the Earth was obtained. Next,

using available gradiometer specifications, a signal processing approach was imple-

mented to model the effects of real-time gradient measurement onboard an aircraft.

The resulting signal was analyzed via metrics developed to rate signal strength and

uniqueness at a variety of representative flight conditions. Based on this compari-

son between GGI signals and truth, map-matching and, in turn, aircraft navigation

feasibility were demonstrated. Additionally, future gradiometer performance require-

ments necessary to produce a usable signal over the entire tested flight envelope were

proposed and tested. Finally, several best case terrain avoidance scenarios were de-

vised to determine feasibility of using a GGI in such a role. By using time to terrain

impact metrics, an attempt to find a threshold gradiometer signal level was made

for a variety of obstacles. While feasibility for GGI-based terrain avoidance was un-

able to be demonstrated, some alternative methods and corresponding gradiometer

requirements were presented.

Challenges and Limitations

The two key obstacles which must be overcome in order to make gravity gradient

map-matching aircraft navigation systems a reality are the performance of airborne

gradiometers and the availability of accurate gravity gradient maps. In this research,

it was assumed that with continued interest from the geophysical, mining, and defense

industries, gravity gradiometers will eventually meet the proposed requirements for

aircraft navigation feasibility. However, they must meet these requirements - mak-

ing accurate measurements at the 10−11s−2 level, yet still be small and light enough

to fit within limited space inside an aircraft. Also, they must be robust enough to
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survive the military flight environment - including rapid maneuvers, elevated g-forces

and hostile environmental conditions often encountered at forward-deployed locations.

Finally, increased gradiometer sensitivity does not come without drawbacks. Account-

ing for self gradients produced by the host vehicle is already a challenging prospect

at the 1Eo sensitivity level. For this study, it was assumed that self gradients were

always exactly known. Should a gradiometer able to sense changes at the 0.01Eo

level be implemented, precise monitoring and correction of self gradients will be vital

to ensure proper measurements. Fuel slosh, the release of stores, control surface and

even pilot movement will all present gradient changes that must be accounted for.

It was also assumed that the generated gravity gradient maps represent truth

- that is, each value was exactly correct in magnitude and position. Actual gravity

gradient maps with enough resolution to be useful in a map-matching algorithm are

very limited in quantity, generally proprietary and contain GPS level position errors.

Obtaining accurate surveys over areas considered unfriendly or hostile presents an

additional challenge. However, as more accurate ground, air, and space-based surveys

take place and gradient calculation methods evolve, the resolution and availability

(particularly in remote areas) of gravity gradient maps will significantly increase. In

summary, there are significant challenges and limitations to overcome before GGI-

based aircraft navigation can be a reality. Given continued research efforts, these

issues are certainly solvable. Though unlikely to be completely addressed within 10

years, it is anticipated, based on previous trends, that these issues will largely be

solved in 20-30 years time.

GGI-based airborne terrain avoidance is the more difficult problem due to the

inverse nature of ranging hazardous terrain via gravity gradiometry. While meth-

ods have been proposed to solve this problem [46, 47], there is very little research

published in open literature to back-up these ideas. Under the assumption that the

inverse problem is solvable, the gradiometer requirements for sensing obstacles which

threaten low flying aircraft are dramatically higher than any current or proposed GGI

specifications. That is not to say that GGI-based (or assisted) airborne terrain avoid-

105



ance is impossible, but it is a distinctly greater challenge than aircraft navigation via

gravity gradient map-matching.

Significant Contributions and Insights

In regards to gravity gradient modeling, this research has clearly implemented

methods that were unable to be found in previous navigation via gravity gradiometry

works. First, a user friendly interface to generate gravity gradient data representing

realistic values produced by the Earth was developed. Next, it was proven that if a bias

is acceptable, Parker’s method can produce gravity gradient data much faster than

more rigorous methods. Also, terrain and geology (high and low frequency) gravity

effects were accounted for using a combination of modeling techniques. Finally, tanker

aircraft and man-made ground obstacle gravitational gradient models were developed

as well.

While relatively simple gravity gradiometer models have been presented in pre-

vious works, real time signal processing effects such as low pass filtering are rarely

mentioned. In most previous studies, it was generally assumed that airborne gra-

diometers provide truth measurements plus white noise. This is not entirely true

as the assumption fails to account for phase lag and time delay implications from

the LPF. In other words, extensively processed post-flight data was assumed to be

available instantly. For a more realistic approach, this research developed and vali-

dated two airborne gradiometer models required to provide real-time gravity gradient

measurements for use in a map-matching navigation algorithm and terrain avoidance

scenarios. Also, the effects of time-delay, phase distortion and loss of high frequency

information caused by the low pass filter were examined and found to likely degrade

map-matching performance - especially at extremely low altitudes and high veloci-

ties. Finally, future navigation-specific gradiometer design targets were proposed and

validated.
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Significant contributions to the study of passive aircraft navigation via a GGI-

based map-matching system are now presented. This research developed two methods

of GGI signal usefulness classification and demonstrated that unique gravity gradient

signals do exist and can be measured by an airborne gradiometer. The study also

investigated the GGI signal in regimes previously not examined and found that signal

levels are highly dependent on terrain uniqueness and host-vehicle altitude and ve-

locity. As such, low terrain variance, high altitude, and low velocities are detrimental

to the signal. Unfortunately, legacy military aircraft flight regimes generally provide

the weakest signal. Additionally, this study was the first to examine the effects of

formation flight on the GGI signal. It was shown that placing the GGI aircraft next

to a large tanker aircraft gave a bias and small amount of noise to the GGI signal.

While it did not significantly hamper the signal’s usefulness for the tested GGIs, for-

mation flight may reduce map-matching performance if a more sensitive gradiometer

is used, particularly in areas with smooth terrain. Also, it was shown that future

GGIs will need to achieve error levels on the order of 0.01Eo for navigation useful-

ness over most of the tested flight envelopes (50-1200m/s velocity, 1-20km altitude,

rough and smooth terrain). However, should a ground or flight test demonstration of

the navigation technology be desired, gradiometers currently in flight test for mining

industries can provide a useful navigation signal for lower flying vehicles traversing

rough terrain.

While previous works involving GGI-based terrain avoidance are few in number,

this research sheds some insight as to why. After development of a GGI-based terrain

avoidance test methodology by modeling a variety of obstacles which are hazardous to

low flying aircraft, it was demonstrated that obstacle range calculation is an inverse

problem - no imminent terrain impact signal threshold exists. It was also shown

that, should the inverse problem be solved, major GGI improvements are needed

for terrain avoidance feasibility. For example, a 45x improvement over current GGI

gradient production rate and LPF cutoff frequency is needed for an aircraft traveling

300m/s to sense small obstacles. Additionally, the GGI must meet these specifications
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with no additional noise. The key driver for these steep gradiometer requirements is

the fact that obstacles most dangerous to low flying aircraft, such as towers and water

tanks, have a high frequency signal easily filtered out, buried in noise, or masked in

the signal from surrounding terrain.

Recommendations for Future Research

With the initial feasibility investigation complete, this section highlights future

research recommendations. While these recommendations are not ordered by priority

(all must eventually be addressed), the next logical step for researchers is the devel-

opment of a gravity gradiometer specific map-matching algorithm. Once developed,

the effort to integrate the algorithm into a navigation system can begin. This is crit-

ical as it will ultimately provide quantitative navigation performance results that can

be used to validate and refine the feasibility metrics used in this research. Future

research recommendations are as follows:

� Continue development of a contour based gravity gradient map-matching algo-

rithm.

� Integrate map-matching algorithm into an aircraft navigation system and de-

termine qualitative navigation performance.

� Investigate the navigation performance of an INS using a GGI for gravity com-

pensation and position updates provided via a map-matching scheme.

� Refine gradiometer model and examine effects of different filter types.

� Further validate and refine the signal usefulness metrics proposed in this re-

search.

� Further validate navigation grade gradiometer requirements proposed in this

research.

� Analyze navigation performance when position and measurement errors are em-

bedded within gravity gradient maps used as truth sources.
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� Generate gravity gradient maps using methods that include density anomalies

within the terrain and geology.

� Model low frequency gravitational effects via the higher resolution EGM2008

model (in lieu of EGM96).

� Pursue methods to solve the inverse problem of terrain avoidance.

Conclusion

While this research has shown that major improvements in GGI gradient pro-

duction rate and bandwidth are needed before GGI assisted terrain avoidance can

be realistically considered, it has also proven that the fundamentals of using a mod-

ern gravity gradiometer as the foundation of a completely passive, precision aircraft

navigation system are sound and that the method is entirely feasible. By modeling

sensors that provide real-time measurement of gravity gradients and then analyzing

the resulting signals via several metrics, it was determined that a specialized GGI

can provide a signal strong and unique enough for map-matching utility. While the

limiting factors have been mentioned, they are certainly conquerable given more time.

With the results of this study and the efforts of previous researchers, along with the

contributions from the gravity gradiometer development community, the foundation

for a passive, essentially unjammable, precision aircraft navigation system has been

laid. Forty years ago, airborne gravity gradient surveys would never work. Today,

these once impossible surveys can be flown daily. Forty years from now, gravity

gradiometers may very well form the backbone of aircraft navigation systems.
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Appendix A. Matlabr Code

Listing A.1:

1 %**************************************************%

% Gravity Gradient Signal and "Truth" Calculation %

% based on Parker methods and EGM96. %

% %

% Marshall Rogers 2008 %

6 % %

%**************************************************%

close all

clear all

11 clc

G=6.67E-11; %Universal Gravity Const.

p=2670; %Average terrain density

16 Eotvos =1E-9; %use to convert units to Eotvos

M=input('Rough or Smooth Terrain [R/S]?','s');

% pulling in elevation data , use/add different areas if desired

if ((M=='R')|(M=='r'))

21 lat =[35 37]; %NS Geodetic coordinates (WGS84 reference ...

ellipsoid) of grid

long =[-122 -120]; %EW Geodetic coordinates (WGS84 reference ...

ellipsoid)of grid

[Z, refvec] = dted('CA_elev2 ', 1,lat ,long); % read in rough ...

area dted data , Z is referenced to MSL (the geoid)

elseif ((M=='S')|(M=='s'))

lat =[35 37]; %NS Geodetic coordinates (WGS84 ...

reference ellipsoid) of grid

26 long =[-90 -88]; %EWGeodetic coordinates (WGS84 ...

reference ellipsoid) of grid
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[Z, refvec] = dted('AK_elev ', 1,lat ,long); % read in ...

smooth dted data , Z is referenced to MSL (the geoid...

)

else

fprintf('Wrong Answer!');

break;

31 end

figure % plot the terrain contour map

geoshow(Z,refvec ,'DisplayType ','texturemap '), colorbar

xlabel('Longitude ','Fontsize ' ,20), ylabel('Latitude ','Fontsize '...

,20)

36 set(gca ,'Fontsize ' ,20);

vcb = colorbar;

set(get(vcb ,'Ylabel '),'String ','Terrain Height (m)','FontSize ' ,24)

set(vcb ,'FontSize ' ,20)

41 alt=input('Input altitude (meters height above average terrain) = ...

');

track_start=input('Track Start [lat long] = ');

track_end=input('Track End [lat long] = ');

vel=input('Input Velocity (meters/sec) = ');

update_rate=input('Enter GGI Update Rate (sec) = ');

46 filter_cutoff=input('Enter GGI Low Pass Filter Cutoff Frequency (...

Hz) = ');

bandwidth=filter_cutoff;

NSD=input('Enter GGI Noise Spectral Density (E/(Hz^1/2)) = ');

filename1=input('Input Filename for GGI Signals (use .mat ...

extension): ','s');

filename3=input('Input Filename for True Map (use .mat extension):...

','s');

51 alt=mean2(Z)+alt; % Height above average terrain calc

alt_EGM96=alt+mean2(Z);

%% Computer Earth 's Radius at central grid point
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a = 6378137.0; % earth semimajor axis in meters

56 f = 1/298.257223563; % reciprocal flattening

e2 = 2*f-f^2; % eccentricity squared

lat_middle =(min(lat)+max(lat))/2;

lat_middle2=atand ((1-e2)*tand(lat_middle)); %convert geodetic lat ...

to geocentric lat

61 long_middle =(min(long)+max(long))/2;

N=a/sqrt(1-e2*sin(lat_middle2)^2);

X_ECEF=N*cosd(lat_middle2)*cos(long_middle);

Y_ECEF=N*cos(lat_middle2)*sin(long_middle);

Z_ECEF =(N*(1-e2))*sin(lat_middle2);

66 R1=sqrt(X_ECEF ^2+ Y_ECEF ^2+ Z_ECEF ^2); % Earth 's radius at grid ...

midpoint

dlong=max(abs(long))-min(abs(long)); %distance longitude

dlat=max(lat)-min(lat); % distance latitude

x_dist=R1*(pi /180)*dlong*cosd(lat_middle);

71 y_dist=R1*(pi /180)*dlat;

y_int=R1*(pi/180) *(3/3600); %3 arc sec spacing (DTED Level 1) ...

3/3600

x_int=cosd(lat_middle)*y_int;

Y1=[0: y_int:y_dist ];

X1=[0: x_int:x_dist ];

76 [X2,Y2]= meshgrid(X1,Y1);

x_track=-R1*(pi /180)*(abs(track_end (2))-abs(track_start (2)))*cosd(...

lat_middle);

y_track=R1*(pi /180)*(abs(track_end (1))-abs(track_start (1)));

track_angle =(180/ pi)*atan2(y_track ,x_track);

81

% setup initial position and velocity for simulink

x_vel=vel*cosd(track_angle);

y_vel=vel*sind(track_angle);

vi=[x_vel y_vel 0];
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86 speed=norm(vi);

sim_time=floor(sqrt(x_track ^2+ y_track ^2)/vel);

ipos=[x_dist -R1*(pi /180)*(abs(track_start (2))-min(abs(long)))*cosd...

(lat_middle) y_dist -R1*(pi/180)*abs(max(lat)-track_start (1)) ...

0]; % initial position based on input

figure % plot the track onto the terrain contour map

91 geoshow(Z,refvec ,'DisplayType ','texturemap '), colorbar

xlabel('Longitude ','Fontsize ' ,20), ylabel('Latitude ','Fontsize '...

,20)

set(gca ,'Fontsize ' ,20);

vcb = colorbar;

set(get(vcb ,'Ylabel '),'String ','Terrain Height (m)','FontSize ' ,24)

96 set(vcb ,'FontSize ' ,20)

hold on

plot([ track_start (2) track_end (2)],[ track_start (1) track_end (1)],'...

k','Linewidth ' ,4)

%% Gradients by Parker 's Methods (Terrain)

101 del_x1=x_int; % x interval

del_x2=y_int; % y interval

m1=length(X1);

m2=length(Y1);

p1 =[0:1:m1 -1];

106 p2 =[0:1:m2 -1];

for ctr=1:m1

if p1(ctr)≤(m1/2) -1

f1_p(ctr)=p1(ctr)/( del_x1*m1); % spatial frequency x

111 f2_p(ctr)=p2(ctr)/( del_x2*m2); % spatial frequency y

else

f1_p(ctr)=(p1(ctr)-m1)/( del_x1*m1); % spatial frequency x

f2_p(ctr)=(p2(ctr)-m2)/( del_x2*m2); % spatial frequency y

end

116 end
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[f1m_p ,f2m_p ]= meshgrid(f1_p ,f2_p); % gridded spatial freq data

f_p=sqrt(f1m_p .^2+ f2m_p .^2);

121 sig =0;

for ctr =1:20

sig=sig +((1./ factorial(ctr)).*(2*pi.*f_p).^(ctr -2).*fft2((Z.^...

ctr))); % perform FFT (see Jekeli & Zhu)

end

126 sig (1)=1E15; %prevent infinite value

mu_xx = -((2*pi)^2).*f1m_p .^2;

mu_xy = -((2*pi)^2).*f1m_p .*f2m_p;

mu_xz=i*((2* pi)^2).*f1m_p .*f_p;

mu_yy = -((2*pi)^2).*f2m_p .^2;

131 mu_yz=i*((2* pi)^2).*f2m_p .*f_p;

mu_zz =((2* pi)^2).*f_p .^2;

Txx_parker =(2*pi*p*G.*ifft2(mu_xx .*exp(-2*pi*alt.*f_p).*sig));

Txy_parker =(2*pi*p*G.*ifft2(mu_xy .*exp(-2*pi*alt.*f_p).*sig));

136 Txz_parker =(2*pi*p*G.*ifft2(mu_xz .*exp(-2*pi*alt.*f_p).*sig));

Tyy_parker =(2*pi*p*G.*ifft2(mu_yy .*exp(-2*pi*alt.*f_p).*sig));

Tyz_parker =(2*pi*p*G.*ifft2(mu_yz .*exp(-2*pi*alt.*f_p).*sig));

Tzz_parker =(2*pi*p*G.*ifft2(mu_zz .*exp(-2*pi*alt.*f_p).*sig));

141 Txx_parker=real(Txx_parker)./ Eotvos;

Txy_parker=real(Txy_parker)./ Eotvos;

Txz_parker=real(Txz_parker)./ Eotvos;

Tyy_parker=real(Tyy_parker)./ Eotvos;

Tyz_parker=real(Tyz_parker)./ Eotvos;

146 Tzz_parker=real(Tzz_parker)./ Eotvos;

%% Gradients from EGM96 (Long wavelength subterranean effects)

% Taken from Kiamehr & Eshagh and Modified

% Could also use geopot97.v0.4e.f code
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151 phi_south=min(lat);

phi_north=max(lat);

lambda_west=min(long);

lambda_east=max(long);

phi_step =30/60; %EGM96 provides a 30 arcmin resolution

156 lambda_step =30/60; %EGM96 provides a 30 arcmin resolution

X_EGM96=lambda_west :3/3600: lambda_east; %setup 3 arcsec array for ...

griddata function

Y_EGM96=phi_south :3/3600: phi_north; %setup 3 arcsec array for ...

griddata function

[X2_EGM96 ,Y2_EGM96 ]= meshgrid(X_EGM96 ,Y_EGM96);

161 filename='EGM96Gradients ';

[Nmax ,Ae,GM,C,S,dC,dS]= Modelread('egm_coef.ascii'); % Read ...

spherical harmonic model

[a,b,c,d,g,h,beta ,psi ,mu,eta]= coefficients(Nmax +3); % calculate ...

Legendre coeffs.

CN=Normal(GM ,Ae ,Nmax);

166 C(3:11 ,1)=C(3:11 ,1)-CN (3:11) '; % Generation of the Potetial ...

Anomaly

fid=fopen(filename ,'w'); % Opening a file for the EGM96 Gradients

for phi=phi_south:phi_step:phi_north

phigeodetic=phi;

171 phi=phi*pi /180;

% Compute the Geocentric latitude via geodetic latitude

e2 =.00669437999013; %1st eccentricity squared

phi=atan((1-e2)*tan(phi));

176

% Compute the Associated Legendre functions

[pnm ,dP]=Pnm(phi *180/pi,Nmax+3,Nmax +3);

for lambda=lambda_west:lambda_step:lambda_east
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181 lambda=lambda*pi /180;

sum=0; % Initialize summations

sum1 =0;

sum2 =0;

186 sum3 =0;

sum4 =0;

sum5 =0;

sumN =0;

sumdg =0;

191 sumeta =0;

sumpsi =0;

% Computation of geocenric distance

N=Ae/sqrt(1-e2*sin(phi)^2);

196 X_ECEF =(N+alt_EGM96)*cos(phi)*cos(lambda);

Y_ECEF =(N+alt_EGM96)*cos(phi)*sin(lambda);

Z_ECEF =((N+alt_EGM96)*(1-e2))*sin(phi);

r=sqrt(X_ECEF ^2+ Y_ECEF ^2+ Z_ECEF ^2);

201 for n=3: Nmax+1

for m=1:n

CS=(C(n,m)*cos((m-1)*lambda)+S(n,m)*sin((m-1)*...

lambda));

AA=(Ae/r)^(n+2);

206 AA1=(Ae/r)^n;

CS1=(-S(n,m)*cos((m-1)*lambda)+C(n,m)*sin((m-1)...

*lambda));

PNM=pnm(n,m);

if (abs(m) -2) ≤ 0

211

PP=(-1)^(abs(m-4) -1)*pnm(n,abs((m) -4));

PP1=(-1)^(abs(m-4) -1)*pnm(n-1,abs((m) -4));
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else

216 PP=pnm(n,abs(m) -2);

PP1=pnm(n-1,abs(m) -2);

end

221 if (abs(m) -1) ≤ 0

QQ=(-1)^(abs(m-3) -1)*pnm(n,abs(abs(m) -3));

QQ1=(-1)^(abs(m-3) -1)*pnm(n-1,abs(abs(m)...

-3));

226 else

QQ=pnm(n,abs(m) -1);

QQ1=pnm(n-1,abs(m) -1);

end

231 % Computing the Txx summation

sum1=sum1+AA*CS*(a(n,abs(m))*PP+b(n,abs(m))*pnm...

(n,abs(m))+...

c(n,abs(m))*pnm(n,abs(m)+2));

% Computing the Txy summation

236 sum3=sum3+AA*CS1*(d(n,m)*PP1+g(n,m)*pnm(n-1,(m)...

)+h(n,m)*pnm(n-1,(m)+2));

% Computing the Txz summation

sum4=sum4+AA*CS*(beta(n,m)*QQ+psi(n,m)*pnm(n,(m...

)+1));

241 % Computing the Tyz summation

sum5=sum5+AA*CS1*(mu(n,m)*QQ1+eta(n,m)*pnm(n...

-1,(m)+1));
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% Computing the Tzz summation

sum2=sum2+(n*(n+1))*AA*CS*PNM;

246

end % of m

end % of n

%The gravity gradient tensor components

251

Txx=-GM/Ae^3* sum1/Eotvos;

Tzz= GM/Ae^3* sum2/Eotvos;

Txy= (-GM/Ae^3* sum3/Eotvos)/10;

Tyz= -GM/Ae^3* sum4/Eotvos;

256 Txz= GM/Ae^3* sum5/Eotvos;

fprintf(fid ,'%g %g %e %e %e %e %e %e \n',phigeodetic ,...

lambda *180/pi ,...

Txx ,-(Txx+Tzz),Tzz ,Txy ,Txz ,Tyz);

261 end % of lambda

end % of phi

fclose(fid);

U=load(filename);

266

% interpolate EGM96 gradients from 30 arcmin res to 3arcsec res

Txx_EGM96=griddata(U(:,2),U(:,1),U(:,3),X2_EGM96 ,Y2_EGM96 ,'v4');

Tyy_EGM96=griddata(U(:,2),U(:,1),U(:,4),X2_EGM96 ,Y2_EGM96 ,'v4');

Tzz_EGM96=griddata(U(:,2),U(:,1),U(:,5),X2_EGM96 ,Y2_EGM96 ,'v4');

271 Txy_EGM96=griddata(U(:,2),U(:,1),U(:,6),X2_EGM96 ,Y2_EGM96 ,'v4');

Txz_EGM96=griddata(U(:,2),U(:,1),U(:,7),X2_EGM96 ,Y2_EGM96 ,'v4');

Tyz_EGM96=griddata(U(:,2),U(:,1),U(:,8),X2_EGM96 ,Y2_EGM96 ,'v4');

%% The Gradients!

276 Txx=Txx_parker+Txx_EGM96;

Txy=Txy_parker+Txy_EGM96;
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Txz=Txz_parker+Txz_EGM96;

Tyy=Tyy_parker+Tyy_EGM96;

Tyz=Tyz_parker+Tyz_EGM96;

281 Tzz=Tzz_parker+Tzz_EGM96;

%% Run Simulink Model

sim('GGI', 0: sim_time); % used 120s in thesis runs

movefile('filename2.mat',filename1)

286 movefile('filename4.mat',filename3)

Listing A.2:

% This function reads the spherical harmonic model

3 function [Nmax ,Ae,GM,C,S,dC,dS]= Modelread(filename)

fid=fopen(filename ,'r');

A1=fscanf(fid ,'%g %g %g \n' ,6);

8

Nmax=A1(1);

Ae=A1(2);

GM=A1(3);

13 while (¬feof(fid))

B=fscanf(fid ,'%d %d %g %g %g %g \n' ,6);

n=B(1);m=B(2);

C(n+1,m+1)=B(3);S(n+1,m+1)=B(4);

18 dC(n+1,m+1)=B(5);dS(n+1,m+1)=B(6);

end

fclose(fid);
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Listing A.3:

%***************************************************************%

% %

% This function computes the coefficients of the Legendre %

4 % functions %

% %

% INPUT %

% the maximum desired degree of geopotential model to be used%

% plus 2 -it is suggested to introduce higher values than the%

9 % maximum degree of the model. %

% %

% OUTPUT %

% %

% all of the coefficients of Legendre functions needed for %

14 % computing the gravity gradients %

% %

% REFERENCE %

% Petrovskaya , M.S. and A.N. Vershkov (2006) , Non/Singular %

% expressions for the gravity gradients in the local %

19 % north -oriented and orbital referencse frames. Journal of %

% Geodesy , Vol 80, 117 -127% %

% %

% %

% by %

24 % Mehdi Eshagh and Ramin Kiamehr 2006 %

% Division of Geodesy %

% Royal Institute of Technology %

% Stockholm , Sweden %

% Email:eshagh@kth.se %

29 % %

% Modified by Marshall Rogers 2008 %

% %

%***************************************************************%

34
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function [a,b,c,d,g,h,beta ,psi ,mu,eta]= coefficients(N)

for n=1:N

for m=1:n

if ((abs(m-1) ==0)|abs(m-1) ==1)

39

a(n,abs(m))=70;

b(n,abs(m))=(n-1+abs(m-1)+1)*(n-1+abs(m-1)+2) /(2* abs(m...

-1) +1);

44 c(n,abs(m))=sqrt (1+∆(abs(m-1) ,0))*sqrt((n-1)^2-(abs(m...

-1) +1) ^2) *...

sqrt((n-1)-abs(m-1))*sqrt(n-1+ abs(m-1) +2) /4;

elseif (2 ≤ abs(m-1) ≤ n-1)

a(n,abs(m))=sqrt (1+∆(abs(m-1) ,2))*sqrt((n-1)^2-(abs(m...

-1) -1)^2) *...

49 sqrt((n-1)+abs(m-1))*sqrt(n-1-abs(m-1) +2) /4;

b(n,abs(m))=((n-1) ^2+(m-1) ^2+3*(n-1)+2)/2;

c(n,abs(m))=sqrt((n-1)^2-(abs(m-1)+1)^2)*sqrt((n-1)-...

abs(m-1))*...

54 sqrt((n-1)+abs(m-1) +2) /4;

d(n,m)=-(m-1)/4/abs(m-1)*sqrt ((2*(n-1)+1) /(2*(n-1) -1))...

*sqrt (1+ kron(m-1,2))*...

sqrt((n-1)^2-(abs(m-1) -1)^2)*sqrt(n-1+ abs(m-1))...

*sqrt(n-1+abs(m-1) -2);

59 g(n,m)=(m-1)/2* sqrt ((2*(n-1)+1) /(2*(n-1) -1))*sqrt(n-1+...

abs(m-1))*...

sqrt(n-1-abs(m-1));
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h(n,m)=(m-1)/4/abs(m-1)*sqrt ((2*(n-1)+1) /(2*(n-1) -1))*...

sqrt((n-1)^2-(abs(m-1) +1) ^2) *...

sqrt(n-1-abs(m-1))*sqrt(n-1-abs(m-1) -2);

64

end

if (abs(m-1) ==1)

69

d(n,m)=0;

g(n,m)=(m-1)/4/abs(m-1)*sqrt ((2*(n-1)+1) /(2*(n-1) -1))*...

sqrt(n)*sqrt(n-2)*(n+1);

74 h(n,m)=(m-1)/4/abs(m-1)*sqrt ((2*(n-1)+1) /(2*(n-1) -1))*...

sqrt(n-4)*sqrt(n-3) *...

sqrt(n-2)*sqrt(n+1);

end

79 if (abs(m-1) ==0)

beta(n,m)=0;

psi(n,m)=-(n+1)*sqrt((n-1)*n/2);

84 elseif (1 ≤ abs(m-1) ≤ (n-1))

beta(n,m)=(n+1) /2* sqrt (1+∆(abs(m-1) ,1))*sqrt(n-1+abs(m...

-1))*sqrt(n-1-abs(m-1)+1);

psi(n,m)=-(n+1)/2* sqrt(n-1-abs(m-1))*sqrt(n-1+abs(m-1)...

+1);

89 end

if (abs(m-1)> 0)
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mu(n,m)=-(m-1)/abs(m-1)*(n+1) /2* sqrt ((2*(n-1) +1) /(2*(n...

-1) -1))*sqrt (1+∆(abs(m-1) ,1))*...

94 sqrt(n-1+ abs(m-1))*sqrt(n-1+ abs(m-1) -1);

eta(n,m)=-(m-1)/abs(m-1)*(n+1)/2* sqrt ((2*(n-1)+1) /(2*(...

n-1) -1))*...

sqrt(n-1-abs(m-1))*sqrt(n-1-abs(m-1) -1);

end

99

end

end

Listing A.4:

% This function computes the normal field potential coefficients

function [J]= Normal(GM,AX,Nmax)

GMS =0.3986005 e15;

4 AXS =6378137.0;

JJ =0.108262982131e-2;

FINV =298.257;

FLTN =1.0/ FINV;

E2=FLTN *(2.0- FLTN);

9

J(1)=GMS/GM;

J(3) = -0.484169650276e-3;

J(5) = 0.790314704521e-6;

J(7) = -0.168729437964e-8;

14 J(9) = 0.346071647263e-11;

J(11) = -0.265086254269e-14;
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Listing A.5:

%*****************************************************%

% %

% This function computes the Legendre function and its%

% first order derivatives using recursive formulae %

5 % %

% INPUT %

% phi=latitude of the desired point %

% Nmax=maximum desired degree %

% Mmax=maximum desired order %

10 % %

% OUTPUT %

% %

% pnm=Normalized associated Legendre function %

% dP=first order derivative of the Normalized %

15 % associated Legendre function %

% %

% REFERENCES %

% Hwang , C. and M.J. Lin , (1998) , Fast Integration%

% of low orbiter 's trajctory perturbed by the %

20 % Earth non -sphericity , Journal of Geodesy , %

% vol 72:578 -585 %

% %

% Borre , Kai (2004) , Geoid Undulations computed by%

% EGM96 , report , Aalborg University %

25 % %

% %

% By Mehdi Eshagh and Ramin Kiamehr 2006 %

% Division of Geodesy %

% Royal Institute of Technology %

30 % Stckholm , Sweden %

% Email:eshagh@kth.se %

% %

%*****************************************************%

124



35 function [pnm ,dP]=Pnm(phi ,Nmax ,Mmax)

nrow=Nmax +1; np1=Mmax +1;

phii=phi*pi /180;

40 x=sin(phii);

y=cos(phii);

pnm(1,1) =1.0;

pnm(2,1)=sqrt (3.0)*x;

45 pnm(2,2)=sqrt (3.0)*y;

pnm(3,2)=sqrt (5.0)*pnm(2,2)*x;

for i=3: np1

n=i-1;

50 pnm(i,i)=sqrt((n+0.5)/n)*pnm(i-1,i-1)*y;

end

k=np1 -1;

for i=3:k

n=i-1;

55 pnm(i+1,i)=sqrt (2.0*n+3)*pnm(i,i)*x;

end

nm1=np1 -2;

for j=1: nm1

m=j-1;

60 k=j+2;

for i=k:np1

n=i-1;

c=(2.0*n+1.0) /(n-m)/(n+m);

c1=c*(2.0*n -1.0);

65 c2=c*(n+m-1) /(2*n-3)*(n-m-1);

c1=sqrt(c1);

c2=sqrt(c2);

pnm(i,j)=c1*x*pnm(i-1,j)-c2*pnm(i-2,j);

end
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70 end

for n=1:Nmax -1

for m=1:n

dP(n,m)=sqrt (((n-1) -(m-1))*((n-1)+(m-1) +1) *(1+∆(m-1,m-1))*...

pnm(n,m+1) -(m-1) *...

75 tan(phi)*pnm(n,m));

end

end

Listing A.6:

%*******************************%

2 % Gradients due to KC -10 Tanker %

% (used to generate white noise)%

%*******************************%

close all

7 clear all

clc

% z positive "downward"

12 G=6.67E-11;

p=132; %density contrast for tanker

Eotvos =1E-9; %Eotvos conversion

a=[ -3.05+25 3.05+25]; % Point 1, Permuted for 7 remaining points

17 b=[ -5 -24.4 -5+24.4]; % Point 1, Permuted for 7 remaining points

c=[ -5 -3.05 -5+3.05]; % Point 1, Permuted for 7 remaining points

alt =0;

Ng=0;

Eg=0;

22
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sumTxx =0;

for ctr1 =1:2

for ctr2 =1:2

for ctr3 =1:2

27 sumTxx=sumTxx +(( -1)^(ctr1)*(-1)^(ctr2)*(-1)^(ctr3)).*...

atan2 (((Ng -b(ctr2)).*(alt -c(ctr3))) ,((Eg-a(ctr1))...

.*((Eg -a(ctr1)).^2+(Ng -b(ctr2)).^2+(alt -c(ctr3))...

.^2) .^(.5)));

end

end

end

32 Txx=G*p*sumTxx/Eotvos

sumTxy =0;

for ctr1 =1:2

37 for ctr2 =1:2

for ctr3 =1:2

sumTxy=sumTxy +(( -1)^(ctr1+ctr2+ctr3)).*log (((alt -c(...

ctr3))+((Eg -a(ctr1)).^2+(Ng -b(ctr2)).^2+(alt -c(ctr3...

)).^2) .^(.5)));

end

end

42 end

Txy=-G*p*sumTxy;

47 sumTxz =0;

for ctr1 =1:2

for ctr2 =1:2

for ctr3 =1:2
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sumTxz=sumTxz +(( -1)^(ctr1)*(-1)^(ctr2)*(-1)^(ctr3)).*...

log (((Ng -b(ctr2))+((Eg -a(ctr1)).^2+(Ng -b(ctr2))...

.^2+(c(ctr3)-alt).^2) .^(.5)));

52 end

end

end

Txz=-G*p*sumTxz/Eotvos;

57

sumTyy =0;

for ctr1 =1:2

for ctr2 =1:2

62 for ctr3 =1:2

sumTyy=sumTyy +(( -1)^(ctr1)*(-1)^(ctr2)*(-1)^(ctr3)).*...

atan2 (((Eg -a(ctr1)).*(alt -c(ctr3))) ,((Ng-b(ctr2))...

.*((Eg -a(ctr1)).^2+(Ng -b(ctr2)).^2+(c(ctr3)-alt)...

.^2) .^(.5)));

end

end

end

67

Tyy=G*p*sumTyy/Eotvos

sumTyz =0;

72 for ctr1 =1:2

for ctr2 =1:2

for ctr3 =1:2

sumTyz=sumTyz +(( -1)^(ctr1)*(-1)^(ctr2)*(-1)^(ctr3)).*...

log (((Eg -a(ctr1))+((Eg -a(ctr1)).^2+(Ng -b(ctr2))...

.^2+(c(ctr3)-alt).^2) .^(.5)));

end

77 end

end
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Tyz=-G*p*sumTyz/Eotvos;

82 Tzz=-(Tyy+Txx)

Listing A.7:

%****************************%

% Terrain Avoidance Scenario %

3 %****************************%

close all

clear all

clc

8 vi=[50 0 0];

speed=norm(vi);

G=6.67E-11;

p=2670; %density contrast ground

% p=1000; % density contrast water tower

13 spacing =1;

N=[0: spacing :1550]; % setup grid

E=[0: spacing :1550]; % setup grid

Eotvos =1E-9; %Eotvos conversion

18 update_rate =1;

filter_cutoff =.2;

%% 25m Cubic Object - dimensions permuted for each obstacle size , ...

water tower gradients calculated similarly

length1 =25; % object base (assumes square)

23 c=[0 25]; % obstacle height

t1=0: spacing/speed:( round(length(N)/2) -(length1/spacing)/2-1)/...

speed; % Truth signal time array
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t2=0:1/ update_rate :(round(length(N)/2)-length1 /2-1)/speed; % time ...

array for sensor with 1Hz sampling rate

28 a=[1000 1000+ length1 ]; % putting obstacle on grid

b=[round(length(N)/2)-length1 /2 round(length(N)/2)+length1 /2]; % ...

putting obstacle on grid

%obstacle height

alt =15; % 10m below obstacle top

33 ipos =[0 length(N)/2 alt];

[Eg,Ng]= meshgrid(E,N);

%Txx

38 sumTxx =0;

for ctr1 =1:2

for ctr2 =1:2

for ctr3 =1:2

43 sumTxx=sumTxx +(( -1)^(ctr1)*(-1)^(ctr2)*(-1)^(ctr3)).*...

atan2 (((Ng -b(ctr2)).*(alt -c(ctr3))) ,((Eg-a(ctr1))...

.*((Eg -a(ctr1)).^2+(Ng -b(ctr2)).^2+(alt -c(ctr3))...

.^2) .^(.5)));

end

end

end

48 Txx=G*p*sumTxx/Eotvos;

% Txy

sumTxy =0;

for ctr1 =1:2

53 for ctr2 =1:2

for ctr3 =1:2
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sumTxy=sumTxy +(( -1)^(ctr1+ctr2+ctr3)).*log (((alt -c(...

ctr3))+((Eg -a(ctr1)).^2+(Ng -b(ctr2)).^2+(alt -c(ctr3...

)).^2) .^(.5)));

end

end

58 end

Txy=-G*p*sumTxy;

Txy (727 ,1051) = -0.000001; % Prevent infinite values

Txy (727 ,1001) =0.000001; % Prevent infinite values

63 Txy (777 ,1051) =0.000001; % Prevent infinite values

Txy (777 ,1001) = -0.000001; % Prevent infinite values

Txy=Txy/Eotvos;

% Txz

68 sumTxz =0;

for ctr1 =1:2

for ctr2 =1:2

for ctr3 =1:2

sumTxz=sumTxz +(( -1)^(ctr1)*(-1)^(ctr2)*(-1)^(ctr3)).*...

log (((Ng -b(ctr2))+((Eg -a(ctr1)).^2+(Ng -b(ctr2))...

.^2+(c(ctr3)-alt).^2) .^(.5)));

73 end

end

end

Txz=G*p*sumTxz/Eotvos;

78

% Tyy

sumTyy =0;

for ctr1 =1:2

for ctr2 =1:2

83 for ctr3 =1:2

sumTyy=sumTyy +(( -1)^(ctr1)*(-1)^(ctr2)*(-1)^(ctr3)).*...

atan2 (((Eg -a(ctr1)).*(alt -c(ctr3))) ,((Ng-b(ctr2))...
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.*((Eg -a(ctr1)).^2+(Ng -b(ctr2)).^2+(c(ctr3)-alt)...

.^2) .^(.5)));

end

end

end

88

Tyy=G*p*sumTyy/Eotvos;

% Tyz

sumTyz =0;

93 for ctr1 =1:2

for ctr2 =1:2

for ctr3 =1:2

sumTyz=sumTyz +(( -1)^(ctr1)*(-1)^(ctr2)*(-1)^(ctr3)).*...

log (((Eg -a(ctr1))+((Eg -a(ctr1)).^2+(Ng -b(ctr2))...

.^2+(c(ctr3)-alt).^2) .^(.5)));

end

98 end

end

Tyz=G*p*sumTyz/Eotvos;

103 % Tzz

Tzz=-(Tyy+Txx);

% Simulation

sim('terrain_avoidance_sim ', 0:.01:30); %run sim for 30s
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Figure A.1: GGI Simulink Block Diagram.

Figure A.2: GGI of Justice Simulink Block Diagram.
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Figure A.3: Terrain Avoidance Simulink Block Diagram.
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Appendix B. Legendre Function Coefficients used for EGM96

Gradient Calculations

an,m = 70, m = 0, 1

an,m =

√
1 + δm,2

4

√
n2 − (m− 1)2

√
n+m

√
n−m+ 2, 2 ≤ m ≤ n

bn,m =
(n+m+ 1)(n+m+ 2)

2(m+ 1)
, m = 0, 1

bn,m =
n2 +m2 + 3n+ 2

2
, 2 ≤ m ≤ n

cn,m =

√
1 + δm,0

4

√
n2 − (m+ 1)2

√
n−m

√
n+m+ 2, m = 0, 1

cn,m =
1

4

√
n2 − (m+ 1)2 ×

√
n−m

√
n+m+ 2, 2 ≤ m ≤ n

dn,m = 0, m = 1

dn,m = − m

4m

√
2n+ 1

2n− 1

√
1 + δm,2

√
n2 − (m− 1)2

√
n+m

√
n+m− 2, 2 ≤ m ≤ n

gn,m =
m

4m

√
2n+ 1

2n− 1

√
n+ 1

√
n− 1(n+ 2), m = 1

gn,m =
m

2

√
2n+ 1

2n− 1

√
n+m

√
n−m, 2 ≤ m ≤ n

hn,m =
m

4m

√
2n+ 1

2n− 1

√
n− 3

√
n− 2

√
n− 1

√
n+ 2, m = 1

hn,m =
m

4m

√
2n+ 1

2n− 1

√
n2 − (m+ 1)2

√
n−m

√
n−m− 2, 2 ≤ m ≤ n

βn,m = 0, m = 0

βn,m =
n+ 2

2

√
1 + δm,1

√
n+m

√
n−m+ 1, 1 ≤ m ≤ n
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ψn,m = −(n+ 2)

√
n(n+ 1)

2
, m = 0

ψn,m = −n+ 2

2

√
n−m

√
n+m+ 1, 1 ≤ m ≤ n

µn,m = −nm+ 2m

2m

√
2n+ 1

2n− 1

√
1 + δm,1

√
n+m

√
n+m− 1, 0 ≤ m ≤ n

ηn,m = −nm+ 2m

2m

√
2n+ 1

2n− 1

√
n−m

√
n−m− 1, 0 ≤ m ≤ n

δp,q = 1, p = q

δp,q = 0, p 6= q
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Appendix C. Supplementary Figures

(a) Runs 1-6, 1000m, GGI 1, Rough Terrain.

(b) Runs 7-12, 1000m, GGI 1, Smooth Terrain.

Figure C.1: Runs 1-12, 1000m, GGI 1.
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(a) Runs 13-18, 1000m, GGI 2, Rough Terrain.

(b) Runs 19-24, 1000m, GGI 2, Smooth Terrain.

Figure C.2: Runs 13-24, 1000m, GGI 2.
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(a) Runs 25-30, 2500m, GGI 1, Rough Terrain.

(b) Runs 31-36, 2500m, GGI 1, Smooth Terrain.

Figure C.3: Runs 25-36, 2500m, GGI 1.
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(a) Runs 37-42, 2500m, GGI 2, Rough Terrain.

(b) Runs 43-48, 2500m, GGI 2, Smooth Terrain.

Figure C.4: Runs 37-48, 2500m, GGI 2.
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(a) Runs 49-54, 5000m, GGI 1, Rough Terrain.

(b) Runs 55-60, 5000m, GGI 1, Smooth Terrain.

Figure C.5: Runs 49-60, 5000m, GGI 1.

141



(a) Runs 61-66, 5000m, GGI 2, Rough Terrain.

(b) Runs 67-72, 5000m, GGI 2, Smooth Terrain.

Figure C.6: Runs 61-72, 5000m, GGI 2.
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(a) Runs 73-78, 10000m, GGI 1, Rough Terrain.

(b) Runs 79-84, 10000m, GGI 1, Smooth Terrain.

Figure C.7: Runs 73-84, 10000m, GGI 1.
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(a) Runs 85-90, 10000m, GGI 2, Rough Terrain.

(b) Runs 91-96, 10000m, GGI 2, Smooth Terrain.

Figure C.8: Runs 85-96, 10000m, GGI 2.
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(a) Runs 97-102, 20000m, GGI 1, Rough Terrain.

(b) Runs 103-108, 20000m, GGI 1, Smooth Terrain.

Figure C.9: Runs 97-108, 20000m, GGI 1.
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(a) Runs 109-114, 20000m, GGI 2, Rough Terrain.

(b) Runs 115-120, 20000m, GGI 2, Smooth Terrain.

Figure C.10: Runs 109-120, 20000m, GGI 2.
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(a) Signal time rate of change, noise free, rough terrain.

(b) Signal time rate of change, noise free, smooth terrain.

Figure C.11: Signal Time Rate of Change, 1000m.

147



(a) Signal time rate of change, noise free, rough terrain.

(b) Signal time rate of change, noise free, smooth terrain.

Figure C.12: Signal Time Rate of Change, 2500m.
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(a) Signal time rate of change, noise free, rough terrain.

(b) Signal time rate of change, noise free, smooth terrain.

Figure C.13: Signal Time Rate of Change, 5000m.
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(a) Signal time rate of change, noise free, rough terrain.

(b) Signal time rate of change, noise free, smooth terrain.

Figure C.14: Signal Time Rate of Change, 10000m.
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(a) Signal time rate of change, noise free, rough terrain.

(b) Signal time rate of change, noise free, smooth terrain.

Figure C.15: Signal Time Rate of Change, 20000m.
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(a) GGI2 Tanker Effect, Rough Terrain.

(b) GGI2 Tanker Effect, Smooth Terrain.

Figure C.16: Runs 123-124, GGI2 Tanker Effect, 5000m, 150m/s.
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(a) GGI1 Tanker Effect, Rough Terrain.

(b) GGI1 Tanker Effect, Smooth Terrain.

Figure C.17: Runs 125-126, GGI1 Tanker Effect, 10000m, 150m/s.
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(a) GGI2 Tanker Effect, Rough Terrain.

(b) GGI2 Tanker Effect, Smooth Terrain.

Figure C.18: Runs 127-128, GGI2 Tanker Effect, 10000m, 150m/s.
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(a) Signal.

(b) Signal rate of change.

Figure C.19: Terrain Avoidance Scenario, 50 m/s, 25x25x25m Block.
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(a) Signal.

(b) Signal rate of change.

Figure C.20: Terrain Avoidance Scenario, 50 m/s, 50x50x50m Block.
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(a) Signal.

(b) Signal rate of change.

Figure C.21: Terrain Avoidance Scenario, 50 m/s, 100x100x100m Block.
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(a) Signal.

(b) Signal rate of change.

Figure C.22: Terrain Avoidance Scenario, 50 m/s, 250x250x250m Block.
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(a) Signal.

(b) Signal rate of change.

Figure C.23: Terrain Avoidance Scenario, 50 m/s, 500x500x500m Block.
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